
Embedding Global and Local Influences for Dynamic Graphs
Meng Liu

2191438@s.hlju.edu.cn
Heilongjiang University & National
University of Defense Technology

Harbin, China

Jiaming Wu
2191439@s.hlju.edu.cn
Heilongjiang University

Harbin, China

Yong Liu∗
liuyong123456@hlju.edu.cn
Heilongjiang University

Harbin, China

ABSTRACT
Graph embedding is becoming increasingly popular due to its abil-
ity of representing large-scale graph data by mapping nodes to
low-dimensional space. Current research usually focuses on trans-
ductive learning, which aims to generates fixed node embeddings
by training the whole graph. However, dynamic graph changes
constantly with new node additions and interactions. Unlike trans-
ductive learning, inductive learning attempts to dynamically gen-
erate node embeddings over time even for unseen nodes, which is
more suitable for real-world applications. Therefore, we propose
an inductive dynamic graph embedding method called AGLI by
aggregating global and local influences. We propose an aggrega-
tor function that integrates global influence with local influence
to generate node embeddings at any time. We conduct extensive
experiments on several real-world datasets and compare AGLI with
several state-of-the-art baseline methods on various tasks. The ex-
perimental results show that AGLI achieves better performance
than the state-of-the-art baseline methods.

CCS CONCEPTS
• Information systems→Datamining; •Computingmethod-
ologies →Machine learning; Artificial intelligence.

KEYWORDS
Dynamic Graph Embedding, Inductive Learning, Global and Local
Inlfuences

ACM Reference Format:
Meng Liu, Jiaming Wu, and Yong Liu. 2022. Embedding Global and Local
Influences for Dynamic Graphs. In Proceedings of the 31st ACM International
Conference on Information and Knowledge Management (CIKM ’22), October
17–21, 2022, Atlanta, GA, USA. ACM, New York, NY, USA, 5 pages. https:
//doi.org/10.1145/3511808.3557594

1 INTRODUCTION
In the real world, graph data is ubiquitous such as communica-
tion graphs, citation graphs, etc. In the fields of machine learning

∗Corresponding Author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’22, October 17–21, 2022, Atlanta, GA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9236-5/22/10. . . $15.00
https://doi.org/10.1145/3511808.3557594

and data mining, learning from graph data has gained much at-
tention [12, 13]. As a popular graph learning method, graph em-
bedding (GE), aims to represent a graph by mapping nodes to a
low-dimensional space [2, 15]. The generated node embeddings can
be used for downstream tasks [1, 16, 17, 29, 30] like node classifica-
tion/clustering, community detection, and link prediction, etc.

Related work. Based on the different datasets, we can divide
GE methods into static graph learning and dynamic graph learn-
ing. A static graph is a graph where neither topological structure
nor node attributes change over time. In the early stages of NE,
researchers usually focus on the topological structure of graphs. For
example, DeepWalk performs a random walk procedure over the
network and then employs the Skip-Gram [18] model to learn node
embeddings [22]. node2vec proposes a biased random walk proce-
dure to balance the breadth-first and depth-first search strategy [4].
GraphSAGE learns a function to generate embeddings by sampling
and aggregating features from a node’s local neighborhood [5].

Unlike the static graph, a dynamic graph contains a graph’s
dynamic changes. Dynamic changes in graph can help researchers
learn the evolution of a graph structure and obtain more effec-
tive embeddings. For example, HTNE uses the Hawkes process
to capture historical neighbors’ influence on the current node to
obtain node embeddings [32]. DyREP proposes a two-time scale
deep dynamic point process model, which captures the interleaved
dynamics of the observed processes [26]. EvolveGCN captures the
dynamic change of graph sequence through using an RNN to evolve
the GCN parameters [21].

In addition, current research usually focuses on transductive
learning, which generates node embeddings once by training the
whole graph [23]. However, graphs change frequently, with new
nodes being added and new interactions happening constantly. In
this case, transductive learning will have to retrain the whole graph
to obtain new node embeddings, which is not feasible for real-
world datasets. Unlike transductive learning, inductive learning
[14, 26] no longer focuses on the graph’s final node embeddings
but attempts to learn a model that can dynamically generate node
embeddings over time even for unseen nodes.

A few works have started to focus on inductive learning, but
they tend to capture the changes in node structure over time. In
other words, the evolution of the graph environment over time has
been neglected in dynamic graph.

Our contributions. In this paper, we propose an inductive dy-
namic graph embedding method called AGLI to learn node embed-
dings. AGLI can effectively capture graph changes to obtain node
embeddings at any time, by aggregating global and local influences
in dynamic graphs.

We conduct experiments in several real-world datasets and com-
pare AGLI with several SOTA methods. The results show that AGLI

https://doi.org/10.1145/3511808.3557594
https://doi.org/10.1145/3511808.3557594
https://doi.org/10.1145/3511808.3557594

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Meng Liu, Jiaming Wu, & Yong Liu

can achieve better performance than baselines on various tasks. We
summarize our main contributions as follows:

(1) We propose an inductive dynamic graph embedding method
AGLI. We model the local neighborhood influence with several
perspectives, and propose a global graph influence based on the
idea of the Linear Threshold model.

(2) We propose a new aggregator function to combine global and
local influences inspired by simulated annealing algorithm.

(3) We empirically evaluate AGLI for multiple tasks on several
real-world datasets and show superior performance.

2 METHOD
In this part, we introduce our method AGLI. First, we give the
problem definition to explain the background, and then discuss the
framework and details of AGLI.

2.1 Problem Definition
According to the interaction between nodes, we can formally define
the dynamic graph as follows.

Definition 1: Dynamic Graph. When an interaction is estab-
lished between two nodes in the graph, the interaction will be accom-
panied by a clear timestamp. The dynamic graph can be defined as
𝐺 = (𝑉 , 𝐸, 𝑇), where 𝑉 is the set of nodes, 𝐸 ⊆ 𝑉 × 𝑉 is the set
of edges, and 𝑇 is the set of interaction timestamps. For each edge
𝑒 = (𝑢, 𝑣) between node 𝑢 and 𝑣 , there is at least one interaction
matching 𝑒 , i.e., 𝑇𝑢,𝑣 = {(𝑢, 𝑣, 𝑡1), (𝑢, 𝑣, 𝑡2), · · · , (𝑢, 𝑣, 𝑡𝑛)}.

In a dynamic graph, a node will interact with other nodes mul-
tiple times, and these interactions can be ordered by timestamp.
When two nodes interact, we call them neighbors. The historical
neighbor sequence of a node can be defined as follows.

Definition 2: Historical Neighbor Sequence. Given a node
𝑢, we can obtain its historical neighbor sequence 𝐻𝑢 , i.e., 𝐻𝑢 =

{(𝑣1, 𝑡1), (𝑣2, 𝑡2), · · · , (𝑣𝑛, 𝑡𝑛)}. Each tuple in the sequence represents
an event, i.e., node 𝑣𝑖 interacts with 𝑢 at time 𝑡𝑖 .

Given a dynamic graph defined above, our goal is to learn an ag-
gregator function that can capture both global and local influences
to update node embeddings inductively.

2.2 Overall Framework
Here we present the framework of our method AGLI, which can
be divided into four parts, i.e., global influence, local influence,
aggregator, and loss function.

For global graph influence, we draw the idea of the Linear
Threshold (LT) model [3] in the information propagation field [11,
25], and generate a dynamic embedding for the global graph. For
local neighborhood influence, we model the local neighborhood
influence from several perspectives: affinity, temporal information,
and self-correlation mechanism.

Afterwards, we devise a new aggregator function to obtain
node embeddings inspired by simulated annealing algorithm [24].
Note that the generation of a node embedding requires only a
combination of its previous embedding and current influences. It
means that giving a new node does not require retraining of the
whole dataset, thus inductive learning is achieved.

In the following, we will discuss the details of above parts. Note
that we first introduce local influence as it is useful for understand-
ing global influence1.

2.3 Local Neighborhood Influence
In a dynamic graph, after an interaction occurs between node 𝑢
and 𝑣 , node 𝑣 will influence the future interactions of node 𝑢, and
vice versa. We will analyze the local influence from several perspec-
tives: affinity, temporal information, and self-correlation mecha-
nism, which work together to form the local influence.

Affinity. We argue that there is an affinity between any two
nodes, which reflects the closeness of their relationship. Given a
node 𝑢 and its neighbor node 𝑖 , we can calculate their affinity 𝑎𝑢,𝑖
through their node embeddings 𝑧𝑢 and 𝑧𝑖 as follows.

𝑎𝑢,𝑖 = 𝜎 (𝑧𝑢 ⊙ 𝑧𝑖) (1)

Here ⊙ denotes element-wise multiplication, 𝜎 is the variant of
sigmoid function to normalize its value to between [0, 1].

Temporal Information. As shown in [7], the Hawkes process
is used to model discrete sequential events by assuming historical
events will influence the occurrence of future events. According to
the process, a node’s historical neighbors will influence its future
interactions. The closer the interaction time, the greater is the
influence on future interactions. Therefore, we can calculate the
time weight 𝑘𝑢,𝑖 of neighbor 𝑖 on node 𝑢 as follows.

𝑘𝑢,𝑖 = 𝛿𝑡𝑢 · 𝑒−|𝑡𝑐−𝑡𝑖 | (2)

Here 𝑡𝑖 is the timestamp when neighbor 𝑖 interacts with 𝑢, 𝑡𝑐 is
the current time, 𝛿𝑡𝑢 is a learnable weight parameter that regulates
the neighbor nodes’ time weight on 𝑢.

Self-Correlation Mechanism. After exploring the neighbor-
hood information, we further introduce a self-correlation mech-
anism [27] to capture the neighborhood sequence’s internal rela-
tionship. In particular, let 𝐿 be the length of the historical neighbor
sequence, given a node 𝑢’s neighbor embedding matrix 𝑍𝑢 ∈ R𝐿×𝑑 ,
it’s normalized self-correlation weight matrix 𝑆 ∈ R𝐿×𝐿 can be
calculated as follows.

𝑆𝑖, 𝑗 =
𝑒 (𝑍𝑢𝑍

T
𝑢)𝑖 𝑗∑

𝑘∈𝐻𝑢
𝑒 (𝑍𝑢𝑍

T
𝑢)𝑖𝑘

(3)

𝑍𝑢′ = 𝑆𝑍𝑢 (4)

With 𝑆 as coefficients, the node 𝑢’s neighbor embedding matrix
𝑍𝑢 can be updated as above, and the updated neighbor embedding
𝑧𝑖′ ∈ 𝑍 ′

𝑢 can be used in the calculation of local influence.
Local Influence Embedding. Combining above two weights,

the local neighborhood influence embedding 𝑙𝑡𝑛𝑢 of 𝑢 at time 𝑡𝑛 can
be obtained as follows.

𝑙
𝑡𝑛
𝑢 =

∑
𝑖∈𝐻𝑢

𝜔𝑢,𝑖 · 𝑧𝑡𝑛−1𝑖′ (5)

𝜔𝑢,𝑖 =
𝑎𝑢,𝑖 · 𝑘𝑢,𝑖∑

𝑖′∈𝐻𝑢
𝑎𝑢,𝑖′ · 𝑘𝑢,𝑖′

(6)

1The local and global influences of a node are calculated every time it interacts, so we
omit the time superscript for each variable by default.

Embedding Global and Local Influences for Dynamic Graphs CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

Here 𝑧𝑡𝑛−1
𝑖

is the embedding of 𝑢’s neighbor 𝑖 at time 𝑡𝑛−1. To
calculate the influence of the next timestamp, we need to use the
node embedding of the previous timestamp.

2.4 Global Graph Influence
Activation Threshold. The global graph environment will influ-
ence the interaction between nodes. When a node 𝑢 joins a graph,
it is not sensitive to changes in the global environment. Only when
the cumulative affinity of 𝑢 exceeds a certain threshold, 𝑢 will be-
come sensitive to global graph changes and can easily capture the
latest changes on the graph. In this case, we call 𝑢 an active node.

For the definitions of the node’s active status and cumulative
affinity, we draw the idea of the Linear Threshold (LT) model [3]
in the information propagation field [11, 25]. The LT model’s basic
idea is that a node can switch its status from inactive to active if its
neighbors’ total influence on the node reaches a certain value.

Let 𝜖 be an activation threshold for all nodes, which is a hyper-
parameter. Let 𝜖𝑢 be the cumulative affinity of node𝑢, which means
the sum of the affinity between𝑢 and𝑢’s neighbors. The cumulative
affinity 𝜖𝑢 of node 𝑢 can be calculated as follows.

𝜖𝑢 =
∑
𝑖∈𝐻𝑢

𝜎 (𝑧𝑢 ⊙ 𝑧𝑖) =
∑
𝑖∈𝐻𝑢

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑧𝑢 ⊙ 𝑧𝑖) + 1
2

(7)

At any time, if 𝜖𝑢 is larger than 𝜖 , i.e., the cumulative affinity
of 𝑢 exceeds the activation threshold, 𝑢 will enter an active status.
We believe that the cumulative affinity of 𝑢 with 𝑢’s neighbors can
reflect the relationship between 𝑢 and the graph to a certain extent.
The higher the cumulative affinity of 𝑢 with its neighbors, the more
easily the global graph will influence 𝑢.

Also, the active status is irreversible, i.e., when node 𝑢 starts to
be influenced by the global graph, the global influence on 𝑢 will
always exist. For example, once a scholar has a good understanding
of a field, he will always be sensitive to this field’s latest ideas.
Therefore, after node 𝑢 enters an active status, we should calculate
the global graph influence embedding 𝑔𝑡𝑛𝑢 of node 𝑢 at time 𝑡𝑛 .

Whole Graph Embedding. Here we discuss the whole graph
embedding which will exert the global influence on each node. First,
we generate a graph embedding 𝑧𝑔𝑟𝑎𝑝ℎ which aggregates all node
embeddings as follows.

𝑧𝑔𝑟𝑎𝑝ℎ =
∑
𝑢∈𝑉

𝑧
𝑡0
𝑢 /|𝑉 | (8)

Here |𝑉 | is the number of nodes, and 𝑧𝑡0𝑢 is the initial node embed-
ding of node 𝑢 at time 𝑡0. In a dynamic graph, the graph structure
and features will evolve over time. Therefore, we need to update
the graph embedding over time. Similarly, in the updating process,
we also believe that only nodes in the active status can be "noticed"
by the whole graph and thus become part of the graph embedding.
In this way, only an active node 𝑢’s embedding is updated from
𝑧
𝑡𝑛−1
𝑢 to 𝑧𝑡𝑛𝑢 , the graph embedding 𝑧𝑔𝑟𝑎𝑝ℎ will be updated as follows.

𝑧𝑔𝑟𝑎𝑝ℎ := (|𝑉 | × 𝑧𝑔𝑟𝑎𝑝ℎ − 𝑧
𝑡𝑛−1
𝑢 + 𝑧

𝑡𝑛
𝑢)/|𝑉 | (9)

Global Influence Embedding.We assume that a node’s global
influence is not only related to the graph embedding, but also to its
dynamics. We first divide a node 𝑢’s dynamics into 𝑐−𝑢 and 𝑐+𝑢 based
on its activation time 𝑡𝑎 . We define 𝑐−𝑢 as the embedding change
per unit time before u is activated. 𝑐+𝑢 is the embedding change per

unit time after 𝑢 is activated. 𝑐−𝑢 and 𝑐+𝑢 are calculated based on the
embedding difference and the time interval as follows.

𝑐−𝑢 =
𝑧
𝑡𝑎
𝑢 − 𝑧

𝑡0
𝑢

𝑡𝑎 − 𝑡0
, 𝑐+𝑢 =

𝑧
𝑡𝑛−1
𝑢 − 𝑧

𝑡𝑎
𝑢

𝑡𝑛−1 − 𝑡𝑎
(10)

Here 𝑧𝑡𝑎𝑢 is the embedding when node 𝑢 enters an active status,
𝑧
𝑡0
𝑢 is 𝑢’s initial embedding, and 𝑧

𝑡𝑛−1
𝑢 is the embedding of 𝑢 at

time 𝑡𝑛−1. The global influence of the graph on a node is exerted
in a proportion that depends on how relevant the node is to the
graph after its active status. Combining Eq. (9) and (10), we finally
calculate the global graph influence embedding 𝑔

𝑡𝑛
𝑢 of node 𝑢 at

time 𝑡𝑛 as follows.

𝑔
𝑡𝑛
𝑢 = (1

𝑑

𝑑∑
𝑖=1

𝑐+
𝑢,𝑖

− 𝑐−
𝑢,𝑖

𝑐+
𝑢,𝑖

) · 𝛿𝑔𝑢 · 𝑧𝑔𝑟𝑎𝑝ℎ (11)

Here 𝑐+
𝑢,𝑖

is the component of 𝑐+𝑢 in the 𝑖𝑡ℎ dimension, 𝑐−
𝑢,𝑖

is the
component of 𝑐−𝑢 in the 𝑖𝑡ℎ dimension, and 𝑑 is the dimension size.

The first part (1
𝑑

∑𝑑
𝑖=1

𝑐+𝑢,𝑖−𝑐−𝑢,𝑖
𝑐+
𝑢,𝑖

) in Eq. (11) is used to measure
the degree to which a node is influenced by the graph. In other
words, it determines in what proportion the graph embedding is
incorporated into a node embedding.

The difference of embedding change degree before and after
activation can reasonably reflect the role of global graph influence.
Thus, by calculating the difference between 𝑐+𝑢 and 𝑐−𝑢 , we can obtain
the degree of embedding change influenced by the graph. The
larger the percentage of this difference in 𝑐+𝑢 , the deeper node 𝑢 is
influenced by the global graph. It is worth noting that this difference
is presented in the form of a vector, i.e., there is a percentage in
each dimension of the vector. Thus, we average this percentage in
all dimensions to obtain the final percentage.

The second part 𝛿𝑔𝑢 in Eq. (11) is a learnable weight parameter
that regulates 𝑢’s global graph influence embedding. By multipling
the weights of the first two parts by the graph embedding 𝑧𝑔𝑟𝑎𝑝ℎ ,
we can finally calculate the global graph influence.

2.5 Aggregator Function
In this part, we design an annealing aggregator function to combine
global and local influences with node embeddings. Note that the
goal of inductive learning is achieved by aggregator functions,
which will be described in detail below.

Considering the global influence is not well-updated at the early
stage, we expect the effect of global influence embedding 𝑔 to be
smaller at first and gradually grow with the number of trained inter-
actions 𝑠 . To this end, we introduce simulated annealing algorithm
[24] to control the ratio of global influence as follows.

𝑧
𝑡𝑛
𝑢 = 𝑧

𝑡𝑛−1
𝑢 + 𝛿𝑖 [𝛾 (𝑠) · 𝑙𝑡𝑛𝑢 + (1 − 𝛾 (𝑠)) · 𝑔𝑡𝑛𝑢] (12)

𝛾 (𝑠) = − 𝑠

|𝐸 | + 𝑠 (13)

Here 𝑧𝑡𝑛𝑢 and 𝑧𝑡𝑛−1𝑢 are node 𝑢’s embedding at time 𝑡𝑛 and 𝑡𝑛−1,
𝑙
𝑡𝑛
𝑢 and 𝑔

𝑡𝑛
𝑢 are local influence embedding and global influence

embedding at time 𝑡𝑛 . 𝛿𝑖 is a learnable parameter that controls the
ratio of both local and global influences. |𝐸 | denotes the number of
interactions, which is the upper bound of 𝑠 .

CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Meng Liu, Jiaming Wu, & Yong Liu

Given a new node, instead of re-training the whole graph to
generate its node embedding, we only need to calculate its local and
global influences. In this way, we can generate node embeddings
inductively.

2.6 Loss Function
To learn the effective node embeddings in a fully unsupervised
setting [31], we apply a graph-based loss function to node embed-
ding 𝑧𝑡𝑛𝑢 , and optimize it with Adam [8] method. The graph-based
loss function encourages nearby nodes to have similar embeddings
while enforcing that the embeddings of disparate nodes are highly
distinct. We use negative squared Euclidean distance to measure
the similarity between two embeddings, the loss function can be
defined as follows.

log𝐿 =
∑
𝑢∈𝑉

∑
𝑣∈𝐻𝑢

[
log𝜎

(
−
𝑧𝑡𝑛𝑢 − 𝑧

𝑡𝑛
𝑣

2)
−𝑄 · 𝐸𝑣𝑛∼𝑃𝑛 (𝑣) log𝜎

(
−
𝑧𝑡𝑛𝑢 − 𝑧

𝑡𝑛
𝑣𝑛

2)] (14)

Due to the enormous computation cost of the loss function, we
use negative sampling [19] to optimize the loss. 𝑃𝑛 (𝑣) is a negative
sampling distribution, and 𝑄 defines the number of negative sam-
ples. We sample negative nodes which have not occured in node
𝑢’s historical neighbor sequence.

3 EXPERIMENTS
3.1 Experimental Setup
3.1.1 Datasets. We conduct experiments on five real-world datasets
as shown in Table 1. DBLP is a co-authorship graph of computer
science [32]. BITotc and BITalpha are two datasets from two bit-
coin trading platforms [9, 10]. AMms is taken from the magazine
subscription [20]. Yelp is a Yelp Challenge dataset [32].

Table 1: Description of the datasets

Datasets DBLP BITotc BITalpha AMms Yelp

Nodes 28,085 5,881 3,783 74,526 424,450
Edges 236,894 35,592 24,186 89,689 2,610,143
Labels 10 7 7 5 5

Timestamps 25 22,115 981 5,082 70

3.1.2 Baselines. We compare AGLI with five state-of-the-art base-
line methods, i.e., Deepwalk, node2vec, GraphSAGE, HTNE, DyREP,
and EvoloveGCN. These methods are described in Section 1.

3.1.3 Parameter Settings. For all methods, we set the embedding
dimension size 𝑑 , the learning rate, the batch size, the number of
negative samples 𝑄 , and the activation threshold 𝜖 to be 128, 0.001,
128, 10, and 1, respectively. Also, we use default values for other
parameters in baselines.

3.2 Results
Here we conduct link prediction experiments on six datasets and
take the Area Under the ROC Curve (AUC) [6] to measure the
prediction performance.

First, we sort all interactions in a dataset in order of interaction
time. We select the top 80% of each dataset as our training set, and
the rest 20% as the test set. If the same timestamp interactions are
assigned to both training set and test set, we assign all interactions
at this timestamp to the training set. We obtain all node embeddings
by applying AGLI and baselines in training set. In the test set,
we sample a certain number of node pairs connected by edges as
positive samples and sample the same number of node pairs without
edge as negative samples.

For AUC, we calculate the dot product of their embeddings for
each pair of nodes and use the sigmoid function to normalize the dot
product as the interaction probability. Then we sort all interaction
probabilities in descending order and assume that there are edges
between each node pair of the top-half. By comparing the truth on
node pairs, we can obtain the AUC score.

As shown in Table 2, it can be seen that AGLI has the best
performance on all datasets, which demonstrates the ability of
AGLI to capture interactive information in the graph. It also shows
that for prediction tasks, a method such as HTNE that exploits the
interaction time are more effective than a method such as Deepwalk
that only focuses on graph structure.

Table 2: Link prediction results of allmethods on all datasets

Metric AUC

Method DBLP BITotc BITalpha AMms Yelp

DeepWalk 0.8253 0.5199 0.5558 0.5483 0.7740
node2vec 0.8173 0.5799 0.6245 0.5228 0.8426

GraphSAGE 0.8452 0.5967 0.6964 0.5554 0.8553
HTNE 0.8868 0.7145 0.7401 0.5741 0.8821
DyREP 0.8763 0.7112 0.7342 0.5807 0.8664

EvolveGCN 0.8554 0.7179 0.7164 0.5143 0.7953
AGLI 0.8954 0.7359 0.7451 0.5934 0.8929

4 CONCLUSIONS
In this paper, we propose an inductive graph embedding method
AGLI that captures both global and local influences to generate node
embeddings at any time. Extensive experiments on several real-
world datasets demonstrate that AGLI significantly outperforms
state-of-the-art baseline methods. In the future, we will study the
influence of attribute learning [28] or contrastive learning [31] on
node embeddings.

ACKNOWLEDGMENTS
This work was supported by the National Natural Science Founda-
tion of China (No. 61972135), and the Natural Science Foundation
of Heilongjiang Province in China (No. LH2020F043).

REFERENCES
[1] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2014. Spectral

Networks and Locally Connected Networks on Graphs. ICLR (2014).
[2] Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. 2019. A Survey on Network

Embedding. TKDE (2019).
[3] Mark Granovetter. 1978. Threshold Models of Collective Behavior. Amer. J.

Sociology (1978).

Embedding Global and Local Influences for Dynamic Graphs CIKM ’22, October 17–21, 2022, Atlanta, GA, USA

[4] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for
Networks. KDD, 855–864.

[5] L.WilliamHamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. NeurIPS, 1024–1034.

[6] A. James Hanley and J. Barbara McNeil. 1982. The meaning and use of the area
under a receiver operating characteristic (ROC) curve. Radiology (1982), 29–36.

[7] G. A. Hawkes. 1971. Point spectra of some mutually exciting point processes.
(1971).

[8] P. Diederik Kingma and Lei Jimmy Ba. 2015. Adam: A Method for Stochastic
Optimization. ICLR (2015).

[9] Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos, and
VS Subrahmanian. 2018. Rev2: Fraudulent user prediction in rating platforms. In
WSDM. 333–341.

[10] Srijan Kumar, Francesca Spezzano, VS Subrahmanian, and Christos Faloutsos.
2016. Edge weight prediction in weighted signed networks. In ICDM. 221–230.

[11] Yuchen Li, Ju Fan, YanhaoWang, and Kian-Lee Tan. 2018. Influence Maximization
on Social Graphs: A Survey. TKDE (2018), 1852–1872.

[12] Ke Liang, Sifan Wu, and Jiayi Gu. 2021. MKA: A Scalable Medical Knowledge-
Assisted Mechanism for Generative Models on Medical Conversation Tasks.
(2021).

[13] Weixuan Liang, Xinwang Liu, Sihang Zhou, Jiyuan Liu, Siwei Wang, and En Zhu.
2022. Robust Graph-based Multi-view Clustering. In AAAI.

[14] Meng Liu and Yong Liu. 2021. Inductive representation learning in temporal
networks via mining neighborhood and community influences. In SIGIR.

[15] Meng Liu, Zi-Wei Quan, Jia-Ming Wu, Yong Liu, and Meng Han. 2022. Embed-
ding temporal networks inductively via mining neighborhood and community
influences. Applied Intelligence (2022).

[16] Yue Liu, Wenxuan Tu, Sihang Zhou, Xinwang Liu, Linxuan Song, Xihong Yang,
and En Zhu. 2022. Deep Graph Clustering via Dual Correlation Reduction. In
AAAI.

[17] Yue Liu, Xihong Yang, Sihang Zhou, and Xinwang Liu. 2022. Simple Contrastive
Graph Clustering. arXiv:2205.07865 (2022).

[18] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. CoRR (2013).

[19] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Distributed Representations of Words and Phrases and their Compositionality.

NeurIPS (2013), 3111–3119.
[20] Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Justifying Recommendations

using Distantly-Labeled Reviews and Fined-Grained Aspects. EMNLP (2019),
188–197.

[21] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,
Hiroki Kanezashi, Tim Kaler, Tao Schardl, and E. Charles Leisersen. 2020.
EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs. AAAI
(2020).

[22] Bryan Perozzi, Rami Al-Rfou’, and Steven Skiena. 2014. DeepWalk: online learning
of social representations. KDD (2014), 701–710.

[23] Balasubramaniam Srinivasan and Bruno Ribeiro. 2020. On the Equivalence
between Node Embeddings and Structural Graph Representations. ICLR (2020).

[24] Michael Steinbrunn, Guido Moerkotte, and Alfons Kemper. 1997. Heuristic and
randomized optimization for the join ordering problem. In The VLDB Journal.

[25] Tang Jia Tian,WANG Yi-Tong, and FENGXiao-Jun. 2011. A new hybrid algorithm
for influence maximization in social networks. Chinese Journal of Computers
(2011), 1956–1965.

[26] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. 2019.
DyRep - Learning Representations over Dynamic Graphs. ICLR (2019).

[27] Wenxuan Tu, Sihang Zhou, Xinwang Liu, Xifeng Guo, Zhiping Cai, En Zhu, and
Jieren Cheng. 2021. Deep fusion clustering network. In AAAI.

[28] Wenxuan Tu, Sihang Zhou, Xinwang Liu, Yue Liu, Zhiping Cai, En Zhu, Zhang
Changwang, and Jieren Cheng. 2022. Initializing Then Refining: A Simple Graph
Attribute Imputation Network. In IJCAI.

[29] Siwei Wang, Xinwang Liu, Li Liu, Wenxuan Tu, Xinzhong Zhu, Jiyuan Liu, Sihang
Zhou, and En Zhu. 2022. Highly-efficient Incomplete Large-scale Multi-view
Clustering with Consensus Bipartite Graph. In CVPR.

[30] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. 2017.
Community Preserving Network Embedding. AAAI (2017), 203–209.

[31] Xihong Yang, Xiaochang Hu, Sihang Zhou, Xinwang Liu, and En Zhu. 2022.
Interpolation-Based Contrastive Learning for Few-Label Semi-Supervised Learn-
ing. TNNLS (2022).

[32] Yuan Zuo, Guannan Liu, Hao Lin, Jia Guo, Xiaoqian Hu, and Junjie Wu. 2018.
Embedding Temporal Network via Neighborhood Formation. KDD.

	Abstract
	1 Introduction
	2 Method
	2.1 Problem Definition
	2.2 Overall Framework
	2.3 Local Neighborhood Influence
	2.4 Global Graph Influence
	2.5 Aggregator Function
	2.6 Loss Function

	3 Experiments
	3.1 Experimental Setup
	3.2 Results

	4 Conclusions
	Acknowledgments
	References

