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Abstract—Thanks to the fact that many real-world data can
be modeled as graph-structured data, graph deep learning is
gradually attracting close attention from researchers. As an
integral component of graph learning, temporal graph learning
abandons the data format of adjacency matrices and instead
utilizes interaction sequences to record and observe real-time
changes in nodes. However, temporal graph learning both benefits
from and is constrained by this approach. The data format
of interaction sequences often leads temporal graph learning
methods to focus only on the closest neighborhoods, making
it difficult to capture high-order structural information and
resulting in noticeable information loss. To ensure that temporal
graph learning methods can consider both high-order structural
information and maintain their flexibility, we propose SET, a
temporal graph method which introduces Structural Embedding
pre-training to enhance Temporal graph learning. Specifically,
we achieve this by introducing classical methods to pre-train the
data, generating node initialization embeddings that focus on
high-order structural information. Furthermore, we constrain
the model to optimize not only based on these embeddings
but also to approach them as signals for data augmentation.
By incorporating structurally embedded features through pre-
training, we are able to obtain a broader receptive field without
compromising model efficiency. We conducted experiments on
several datasets, the experimental results validate the perfor-
mance of our proposed method SET.

Index Terms—graph deep learning, temporal graph, pre-
training

I. INTRODUCTION

Graph data is frequently encountered in various real-world
contexts, including academic collaboration, product consump-
tion, financial transactions, city transportation, and more. In
the realm of graph data, individuals are commonly represented
as nodes, while the connections between individuals are de-
picted as edges. Machine learning methods designed for graph
data often produce representation vectors, also referred to as
embeddings, for nodes. These embeddings find utility in a
wide range of graph learning tasks, such as link prediction,
node clustering, and classification. Consequently, graph deep
learning plays an active role in numerous real-world scenarios,
including social recommendation [1], multi-modal fusion [2]–
[4], knowledge graph [5]–[7], traffic forecasting [8], multi-
view clustering [9], [10], fake news detection [11], social
security [12], [13], and image analysis [14], [15], among
others.

Traditional graph learning methods typically rely on static
graphs, where the graph structure remains unchanged during
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Fig. 1. Difference between static graphs and temporal graphs. Compared to
the adjacency matrix, which can store only one edge, the interaction sequence
can represent multiple interactions between two nodes.

the training process. However, real-world graph data often
contains valuable temporal information, and disregarding this
information may result in inadequate learning outcomes. Con-
sequently, researchers have introduced the concept of temporal
graphs, which capture the temporal evolution in real-time.

Temporal graph learning departs from the traditional method
of using adjacency matrices to represent graph structure and
instead employs interaction sequence (adjacency list) for data
storage and retrieval. As shown in Figure 1, Compared with the
adjacency matrix-based static graph, the interaction sequence-
based temporal graph clearly records each interaction of nodes.

By leveraging interaction sequence, temporal graph methods
become more adaptable and lightweight. However, this pattern
also restricts their ability to access higher-order structural
information. Existing temporal models primarily concentrate
on closely connected first-order neighborhood information,
neglecting higher-dimensional global structural information.

Although it has been demonstrated that first-order neigh-
borhood information holds significant importance, it is crucial
not to overlook the broader perspective offered by higher-order
global structural information. Current temporal graph learning
methods often overlook global structural information due to
the challenges posed by obtaining higher-order sub-graphs
involving multiple nodes within the batch training model



based on interaction sequences. To mitigate the computational
complexity associated with acquiring higher-order structural
information, we propose SET, a novel temporal graph learning
method, which enhances temporal graph learning through data
augmentation via pre-training on structural embeddings.

In our proposed method, we leverage the Graph AutoEn-
coder (GAE) [16] as the pre-training model to generate
initial node embeddings. GAE is a well-established static
graph learning model that effectively captures global structural
information. By employing GAE, we obtain initial embeddings
for all nodes, which serve as the starting features. During
training, we encourage the node embeddings to align with
these features.

Furthermore, we enhance the efficiency of deep learning
model training by incorporating power constraints into the loss
function. This ensures that dimensions of the embeddings that
deviate from the supervised signal receive higher optimization
weights. As a result, our proposed method, SET, outperforms
multiple SOTA baseline methods on various temporal graph
datasets, achieving superior performance.

Our contributions can be summarized as follows:
(1) We propose a temporal graph learning method called

SET, which introduces structural embedding pre-training to
enhance temporal graph learning.

(2) To enhance the effectiveness of deep learning training,
we impose constraints on the loss function that focus more on
optimizing those dimensions with large variance.

(3) We compare SET with multiple baseline methods on
different datasets, and the results validate the effectiveness and
performance of our method.

II. RELATED WORK

Graph learning has found wide applications in various fields
due to the fact that many relationships between samples in
many different domain datasets can be modeled as graphs
[17]–[19]. By representing samples as nodes and relations
between samples as edges, deep learning techniques can be uti-
lized to extract important latent information from graph data.
These information can be utilized for downstream tasks, such
as node classification or clustering [20], [21], link prediction
[22], [23], community discovery [24]–[26], graph reasoning
[27], graph reconstruction and generation [28]–[30], etc.

Among different types of graph data, temporal graphs hold
significant importance [31]. Traditional graphs are often static
and are commonly represented using adjacency matrices to
capture the connections between nodes. However, adjacency
matrices fail to capture the temporal aspect of node changes.
For instance, the establishment of relationships between nodes
may occur at different times, and the same pair of nodes
may have multiple relationship occurrences. To address this,
researchers begin to focus on temporal graphs, where the entire
graph is not observed in the form of an adjacency matrix, but
rather the interactions between nodes are recorded in the form
of adjacency tables [32], [33]. This allows temporal graphs
to capture the sequential order of these interactions, thereby
incorporating crucial temporal information.

It is worth noting that temporal graphs, using the interac-
tion sequences (i.e., adjacency lists), no longer require the
entire adjacency matrix to be loaded at once. Instead, the
interaction records of nodes are divided into multiple batches,
avoiding potential memory overflow and increasing flexibility.
However, the loss of the adjacency matrix poses challenges
for researchers who wish to obtain higher-order neighborhood
information through node indexing. As a result, the focus is
primarily on capturing first-order neighborhood information.

Through extensive evaluations of various classic temporal
graph methods [34]–[36], it has been shown that the strategy of
sacrificing higher-order neighborhood information in exchange
for temporal information is successful, often yielding desirable
results in specific scenarios. However, the absence of higher-
order structural information inevitably limits the receptive field
of the models. Therefore, we aim to find a strategy that obtains
global structural information to the fullest extent possible
without significantly increasing the computational complexity
of temporal graph models. In the next section, we will provide
the details of SET, which incorporates such a strategy.

III. METHOD

In this section, we will describe the details of SET. First,
we give some preliminaries about temporal graph learning.
Then we introduce the pre-training process (structural embed-
ding generation) and training process (temporal embedding
updating). Finally, we discuss how to control the optimization
granularity by scaling the loss function.

A. Preliminaries

Given a temporal graph G = (V,E, T ), we define V as the
node set, E as the interaction (edge) set, and T as the time
set. In the actual graph, one interaction can be formulated
as (u, v, t), where u denotes the source node, v denotes the
target node, and t denotes the interaction time. Here we define
initial features as X. Note that in the field of temporal graph
learning, only a small portion of the dataset has initial features,
while most of the dataset is lacking initial features. For those
datasets that lack initial features, researchers usually use one-
hot vectors or positional encoding to generate features.

Temporal graph learning aims to capture important infor-
mation in the temporal graph to generate embedding for each
node. Such low-dimensional node embeddings Z can be used
more flexibly and efficiently in downstream tasks and real-
world application scenarios compared to high-dimensional
graph data.

B. Structural Embedding Pre-Training

As mentioned above, we introduce the Graph AutoEncoder
(GAE) [16] as the pre-training model to generate structural
node embeddings as initial features. As one of the classical
work in graph learning, GAE is highly regarded for its ability
to capture global structural information efficiently and flexibly.
GAE can be divided into two parts: encoder and decoder.
The encoder can transfer the initial features X to the hidden



embeddings H, and the decoder can transfer H to the final
embeddings Z.

Specially, the encoder module first passes the input graph
data through the encoder to obtain a low-dimensional vector
representation, and then reconstructs the low-dimensional vec-
tors into the original graph data through the decoder module.
By training the encoder and decoder, GAE can learn a compact
representation of the graph data, which contains the structure
and feature information of the graph.

Specially, denote A as the graph adjacency matrix, the
encoder can be formulated as follows.

H = fE(A,X,WE) (1)

fE denotes the encoder function, which tends to consist
of the linear layer and the activation layer (such as ReLU).
WE is the learnable parameter matrix, which used to adjust
the weights of the encoder. Through the encoder, the GAE
transforms the initial features X into the hidden embeddings
H by passing structural information based on the adjacency
matrix A.

The decoder function fD is similar as the encoder, which
also tends to consist of the linear layer and the activation layer.
In contrast, decoder aims to transforms the hidden embeddings
H into the final node embeddings Z, where WD is also a
learnable parameter matrix.

Z = fD(H,WD) (2)

After obtain the final node embeddings Z, GAE utilizes
them to reconstruct the adjacency matrix Â by the sigmoid
function σ, where WA is the learnable parameter matrix.

Â = σ(Z,ZT ,WA) (3)

Given the initial adjacency matrix A and the reconstruct
matrix Â, GAE utilizes the reconstruction loss as the loss
function.

Lrec = min
WE ,WD,WA

MSE(Â,A) (4)

MSE(·, ·) denotes the MSE loss, i.e., mean squared error
loss, also called L2 loss, is one of the most common loss
functions in deep learning.The purpose of the loss function
is to optimize the parameter matrixs WE ,WD,WA in the
model so that the learned embeddings Z are as good as
possible.

Notice that GAE, as a pre-training model, has a loss
function that is not added to the loss function of the proposed
SET method, which undergoes an independent and complete
training process. Then SET directly uses the node embeddings
generated by GAE as initialized features.

C. Temporal Embedding Training

For temporal embedding training, we utilize the classic
temporal graph method HTNE [37] as our baseline model.
HTNE is one of the early classical work on temporal graph
learning, known for its ability to efficiently and flexibly mine
the effects from historical events. Note that the inclusion

of pre-training with GAE has little effect on the training
efficiency and overall runtime of the HTNE model, since GAE
runs only a small fraction of the time.

HTNE introduce the Hawkes process [38] as the main con-
tribution, which argues that the historical events will influence
the future event, and this influence will decreases with time. In
this way, HTNE propose the conditional intensity to evaluate
the probability between two nodes at any time.

Given an interaction (u, v, t), HTNE calculate their condi-
tional intensity λu,y,t as follows.

λu,v,t = µu,v + hu,v,t (5)

Here µu,v denotes the basic intensity between two nodes
without any other influences, i.e., µu,v = −||zu − zv||2.
hu,v,t denotes the Hawkes increment intensity to evaluate the
influences from node u’s historical neighbors.

hu,v,t =
∑
i∈Nu

µi,v · ai,u · f(t− ti) (6)

Nu denotes the historical neighbors of node u. ai,u is the
weight of neighbor i in Nu.

ai,u =
exp(µi,u)∑

i′∈Nu
exp(µi′,u)

(7)

f(t− ti) is the time function to calculate the time interval
between historical time ti and current time t, and then trans-
forms the interval into the time weight, where δ is a learnable
parameter.

f(t− ti) = exp(−δ(t− ti)) (8)

After calculate the conditional intensity, HTNE introduces
the negative sampling technology to construct the contrastive
loss function as follows.

Ltem = − log σ(λu,v,t)−
∑
k∼Pu

log σ(1− λu,k,t) (9)

In this function, HTNE encourages positive pairs as close as
possible and negative pairs as far away as possible. Pu is the
sample distribution, which is proportional to node u’s degree.

D. Enhanced Loss Function

As mentioned above, we introduce the structural embedding
pre-training to enhance the information fusion process. In the
HTNE model, we utilize the final node embeddings from GAE
as its initial features. But this is not enough, because during
model training, the embeddings of nodes are updated, resulting
in deviations from structural embeddings. Therefore, we set
up additional loss functions that encourage constantly updated
time embeddings Z to align with the initialized structural
embeddings Z0.

Lalign = −||z0u − zu||2 − ||z0v − zv||2 (10)

In addition, we introduce the power scaling error [39] for
SET. The intuition of the power scaling error is that for
samples or dimensions with small differences, they themselves



TABLE I
DESCRIPTION OF THE DATASETS.

Datasets DBLP Brain BITotc AMms

# Nodes 28,085 5,000 5,881 74,526
# Interactions 236,894 1,955,488 35,592 89,689
# Timestamps 27 12 27,487 5,082

# Class 10 10 21 5
# Type Academic Bioinformatic Financial E-commerce

do not require much optimization, but should focus on opti-
mizing those samples or dimensions with large differences.
By magnifying these differences to power levels, the model is
more likely to optimize where it is not already optimized. To
achieve this error, we propose a hyper-parameter γ. The final
loss function can be formulated as follows.

L =
∑
E

(Ltem + Lalign)
γ (11)

By adjusting the value of γ, we can effectively control the
scale of the loss function, so that we can artificially decide
how much to strengthen the optimization of the model for the
weak position.

IV. EXPERIMENT

A. Datasets

As shown in Table I, we construct experiments on several
datasets from different areas (Academic, Bioinformatic, Finan-
cial, and E-commerce).

DBLP [37] is a co-author graph, which contains different
computer science domains. If two authors appear on the same
paper, we assume they have interacted.

Brain [40] is a connectivity graph of brain tissue in humans.
If two brain tissues are activated at the same time, we think
there is an interaction between them.

BITotc [41] is the transaction records of the Bitcoin ex-
change platform OTC. The user rates the transaction to get
the corresponding label.

AMms [42] is magazine subscription graph on Amazon
website, and users rate the magazines they subscribe to.

B. Baselines

To demonstrate the performance of our proposed method
SET, we compare it with multiple classic SOTA methods on
different tasks. These baseline methods can be divide into two
parts.

(1) Static graph methods: AutoEncoder [43], DeepWalk
[44], node2vec [45], GAE [16], SDCN [46].

(2) Temporal graph methods: HTNE [37], JODIE [47],
TGN [48], MNCI [49], TREND [50].

C. Experimental Settings

We conduct two tasks on these models: node classification
and node clustering. We also study the parameter sensitivity
of the enhanced loss parameter γ.

We use default values for all comparison methods. For our
proposed method SET, we set epoch number, learning rate,

negative sampling number, batch size, embedding size and
enhanced parameter γ as 50/100, 0.01, 3, 512, 128, and 2,
respectively. All of our experiments are implemented on an
NVIDIA RTX-3070Ti GPU.

D. Node Classification

In deep graph learning, node classification is a classical
downstream task, which focuses on classify nodes into dif-
ferent categories. As shown in Table II, we report the node
classification performance on all datasets. According to the
results, the following conclusions can be drawn:

(1) Compared with static graph models, temporal graph
models usually achieve better performance. It means that time
information is important in graph learning.

(2) On some datasets, several static methods can also
obtain good performance, which demonstrates that the global
structure information that is often missing from temporal graph
models has a negative influence on them (compared to the
gains gained by static graph models).

(3) Our proposed model SET achieves the best performance
on all datasets, because it combines both temporal and struc-
tural information, i.e., combining the advantages of both types
of models.

E. Node Clustering

We also conduct node clustering task on DBLP and Brain
datasets. Note that the node labels of BITotc and AMms are
only suitable for classification, not clustering. Because they
are rating tags, they do not represent the attribute information
of the node well. Therefore, for an unsupervised task, it is
difficult for models to learn the scoring label without reference.
This is consistent with the actual results that all the models
performed very poorly on these two datasets.

For node clustering tasks, we can see more clearly that the
temporal graph model without structural information does not
show better performance than the static graph model. This
fully demonstrates the necessity of combining the structure
information with the time series diagram model, and also
proves the effectiveness of our method.

F. Parameter Sensitivity Study

As mentioned above, we introduce the power scaling er-
ror into the final loss function to control the optimization
strengthen of the model for the weak position. To achieve this,
we propose a hyper-parameter γ. Here we aims to discuss the
effect of γ on model performance.

In particular, we select different values for γ, includes
{0.5, 1, 1.25, 1.5, 1.75, 2, 3}. By adjusting the values of γ, we
can observe the influence of γ on model’s performance.

According to the Figure 2, we can observe that the hyper-
parameter γ is useful for the model. When γ = 1, it is
equal to we have not use it. Obviously, γ = 1 is not the
best performance. In addition, the value of γ is different on
different data sets. This means that these data sets have dif-
ferent distributions, making the model adapt as it learns. This
is also consistent with the objective phenomenon that models



TABLE II
NODE CLASSIFICATION PERFORMANCE ON ALL DATASETS. NOTE THAT THE OPTIMAL RESULTS ARE HIGHLIGHTED IN BOLD, AND THE SUB-OPTIMAL

RESULTS ARE UNDERLINED.

Datasets DBLP Brain BITotc AMms

ACC F1 ACC F1 ACC F1 ACC F1

AutoEncoder (2006) 43.17 40.44 25.12 23.15 27.43 28.11 42.41 41.59
DeepWalk (2014) 62.76 62.35 34.54 32.97 42.65 33.81 57.91 43.12
node2vec (2016) 63.87 63.48 38.72 33.17 44.23 32.47 57.93 43.10

GAE (2016) 64.89 65.46 38.16 32.84 41.17 32.59 57.09 42.77
SDCN (2020) 60.56 59.65 37.64 32.60 39.55 30.97 58.51 43.19

HTNE (2018) 65.47 65.32 33.94 29.11 38.84 32.22 57.96 43.04
JODIE (2019) 58.76 55.93 39.93 33.68 47.52 34.41 55.34 42.47
TGN (2020) 55.67 54.52 25.48 24.15 36.27 29.35 58.50 43.19

MNCI (2021) 65.88 65.41 38.54 34.35 44.93 33.61 58.48 43.20
TREND (2022) 61.28 59.88 39.85 34.44 32.14 27.32 58.43 43.16

SET (ours) 66.53 66.31 40.38 34.95 48.39 35.07 59.24 43.87

TABLE III
NODE CLUSTERING PERFORMANCE ON DBLP AND BRAIN DATASETS. NOTE THAT THE OPTIMAL RESULTS ARE HIGHLIGHTED IN BOLD, AND THE

SUB-OPTIMAL RESULTS ARE UNDERLINED.

Datasets DBLP Brain

ACC NMI ARI F1 ACC NMI ARI F1

AutoEncoder 42.16 36.71 22.54 37.84 43.48 50.49 29.78 43.26
DeepWalk 28.95 22.03 13.73 24.79 41.28 49.09 28.40 42.54
node2vec 46.31 34.87 20.40 43.35 43.92 45.96 26.08 46.61

GAE 39.31 29.75 17.17 35.04 31.22 32.23 14.97 34.11
SDCN 46.69 35.07 23.74 40.31 42.62 46.61 27.93 41.42

HTNE 45.74 35.95 22.13 43.98 43.20 50.33 29.26 43.85
JODIE 20.79 11.67 11.32 13.23 19.14 10.50 5.00 11.12
TGN 19.78 9.82 5.46 10.66 17.40 8.04 4.56 13.49

MNCI 46.85 36.28 23.40 42.57 40.42 43.58 26.74 39.63
TREND 25.36 14.25 6.24 19.89 39.83 45.64 22.82 33.67

SET 48.48 39.47 24.21 44.93 44.96 50.97 30.08 47.14

0.5 1 1.25 1.5 1.75 2 360

62

64

66

68

70

Pe
rfo

rm
an

ce
 (%

)

ACC
F1

(a) DBLP

0.5 1 1.25 1.5 1.75 2 320

25

30

35

40

45

Pe
rfo

rm
an

ce
 (%

)

ACC
F1

(b) Brain

0.5 1 1.25 1.5 1.75 2 325

30

35

40

45

50

55

Pe
rfo

rm
an

ce
 (%

)

ACC
F1

(c) BITotc

0.5 1 1.25 1.5 1.75 2 335

40

45

50

55

60

65

70

Pe
rfo

rm
an

ce
 (%

)

ACC
F1

(d) AMms

Fig. 2. Parameter sensitivity study of different γ values on all datasets.

should choose different strategies when dealing with different
scenarios. Based on this, we believe that the proposed γ is
successful, which can help the model choose the optimization
effort more flexibly.

V. CONCLUSION

In this paper, we discuss the necessity of structure embed-
dings for temporal graph learning, and point out the difficulty
of combining structure information in temporal graph learning.
To solve this problem, we propose the SET method, which in-
troduces the pre-training of structure embeddings to avoid the
huge computational cost of obtaining structure information in
the training process of temporal graph models. Combined with
experiments, we prove the effectiveness and feasibility of this
strategy. Future, we will focus on the unified generalization
framework to combine information that is difficult to obtain
by various temporal graph learning models.
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