
Vol.:(0123456789)1 3

Applied Intelligence
https://doi.org/10.1007/s10489-021-03102-x

Embedding temporal networks inductively via mining neighborhood
and community influences

Meng Liu1 · Zi‑Wei Quan1 · Jia‑Ming Wu1 · Yong Liu1 · Meng Han2

Accepted: 10 December 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Network embedding aims to generate an embedding for each node in a network, which facilitates downstream machine
learning tasks such as node classification and link prediction. Current work mainly focuses on transductive network embed-
ding, i.e. generating fixed node embeddings, which is not suitable for real-world applications. This paper proposes a novel
continual temporal network embedding method called ConMNCI by mining neighborhood and community influences
inductively. We propose an aggregator function that integrates neighborhood influence with community influence to gener-
ate node embeddings at any time, and introduce the idea from continual learning to enhance inductive learning. We conduct
extensive experiments on several real-world datasets and compare ConMNCI with several state-of-the-art baseline methods
on various tasks, including node classification and network visualization. The experimental results show that ConMNCI
significantly outperforms the state-of-the-art baselines.

Keywords  Temporal network · Inductive network embedding · Continual learning · Influence mining

1  Introduction

Social networks, protein networks, and e-commerce net-
works [54] are broadly existed in the real-world systems.
Recently, both industrial and academic are becoming
increasingly interested in mining information on large-scale
networks [45]. Considering the complex and irregular fea-
tures of network patterns, learning network data is challeng-
ing [18]. As a popular field, network embedding, also known
as network representation learning (NRL), aims to model
network by mapping nodes to a low-dimensional space
[5, 8, 50]. NRL can be used in many real-world domains.
The node embeddings generated by NRL could be used for
downstream machine learning tasks such as node classifica-
tion and link prediction [4, 36].

Network Representation Learning has drawn consider-
able attention due to the wide range of application. Current

research works usually focus on transductive learning,
which generate fixed node embeddings by directly training
the whole network in its final state [44, 48]. However, in
the real world, networks change frequently, with new nodes
being added and new interactions happening constantly.
Therefore, many real-world tasks require node embeddings
to be updated alongside network changes. Thus transductive
learning will have to retrain the whole network to obtain
new node embeddings, which is not feasible for real-world
networks, especially large-scale networks.

Unlike transductive learning, inductive learning [48] no
longer focuses on the network’s final node embeddings but
attempts to learn a model that can dynamically generate
node embeddings over time even for unseen nodes.

Inductive learning usually learn node embeddings in tem-
poral networks. In a temporal network, edges are annotated by
sequential interactive events between nodes. Many real-world
networks contain interaction time between nodes, such as the
bitcoin trading network, the citation network, etc. Combin-
ing this temporal information allows researchers to learn the
dynamics of individual nodes in the network more compre-
hensively. However, how to capture temporal information and
mine network changes over time is a challenging problem.

To address the challenge in temporal networks, in this
paper, we propose a continual inductive network embedding

 *	 Yong Liu
	 liuyong123456@hlju.edu.cn

	 Meng Han
	 menghan@kennesaw.edu

1	 Heilongjiang University, Harbin, China
2	 Zhejiang University, Hangzhou, Zhejiang, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-021-03102-x&domain=pdf

	 M. Liu et al.

1 3

method called ConMNCI by mining neighborhood and com-
munity influences for each node.

First, we give a brief introduction to neighborhood and
community. As shown in Fig. 1a, the nodes that are directly
connected to node A constitute its neighborhood, while the
two nodes with the lightest color that are not directly con-
nected to node A are not in its neighborhood. As shown in
Fig. 1b, the nodes with similar behavior patterns or prefer-
ences constitute a community. In this figure, we label four
different communities with four colors.

For mining neighborhood influence, it is obvious that the
historical neighbors of a node will influence its future inter-
actions. This influence is not only related to neighbor’s own
characteristics but also related to their interaction time, thus
we should combine them to reflect the influence. We calculate
the affinity between node and neighbors through their embed-
dings, and also encode the interaction time into embeddings.

For mining community influence, we introduce the
concepts of community detection [11, 51] and community
embedding [6] by defining several communities and learn-
ing an embedding for each community. Given a node, it
may have different closeness to different communities. The
deeper closeness a node is to a community, the more influ-
ence this community has on the node. For example, users on
Twitter are influenced differently by different topics depend-
ing on their interests, and consumers also have different pref-
erences for different products.

After mining neighborhood and community influences,
we devise a new aggregator function to obtain node embed-
dings by modifying the Gated Recurrent Unit (GRU)
framework [7, 16]. In this way, we can obtain effective node
embeddings at any time.

Finally, we introduce the idea from continual learning
[47] used to alleviate catastrophic forgetting problem to
enhance inductive learning. Specifically, after the optimi-
zation of each training batch, we select experience embed-
dings from this batch and store them into the experience
buffer. During subsequent training, we sample the experi-
ence embeddings from the buffer as a new constraint, thus

ensuring that ConMNCI consolidaes the existing knowledge
learned from historical data.

We evaluate ConMNCI on mutiple real-world datasets
with various tasks, including node classification, link pre-
diction, and visualization, etc. The results demonstrate that
ConMNCI can achieve better performance than state-of-
the-art baseline methods, which illustrates the capacity of
ConMNCI in capturing network changes.

Compared with our conference version [26] that has been
accepted as a short paper in SIGIR 2021, this paper has been
extended as follows. (1) We are the first to introduce the
idea from continual learning to enhance inductive learning,
and use the self-attention mechanism and Kullback-Leibler
divergence for experience retaining. (2) In Community Influ-
ence part, we discuss both overlapping and non-overlapping
community patterns in a complementary way. (3) In Neigh-
borhood Influence part, we analyze the effect of length of
historical neighbor sequence on embedding performance
by previous work and experiments. (4) We conduct more
experiments than the conference version, including link pre-
diction, parameter sensitivity, and ablation study.

Our main contributions can be summarized as follows.

(1)	 We propose ConMNCI to inductively generate effective
node embeddings at any time in temporal networks by
utilizing the positional encoding technology to initial-
ize node embedding, which can speed up the conver-
gence speed of training process.

(2)	 We incorporate community detection and community
embedding to mine community influence in temporal
networks with the consideration of both overlapping
and non-overlapping community patterns.

(3)	 We propose a novel GRU-based aggregation function
to aggregate neighborhood and community influences.
We also introduce the idea from continual learning to
further improve the effect of inductive learning.

(4)	 We conduct extensive experiments on several real-
world datasets to demonstrate the effectiveness of our
proposed method ConMNCI. The results show that

Fig. 1   Neighborhood and com-
munity

A

Embedding temporal networks inductively via mining neighborhood and community influences﻿	

1 3

ConMNCI significantly outperforms the state-of-the-
art baselines.

The rest of this paper is organized as follows. In Section 2,
we summarize recent research related to our work. In Sec-
tion 3, we describe our proposed method in detail. In Sec-
tion 4, we provide the experimental results and analysis. In
Section 5, we conclude this work and discuss future work.

The source code and data can be downloaded from https://​
github.​com/​MGitH​ubL/​MNCI.

2 � Related work

Served as an important role in downstream machine learn-
ing tasks, more and more work was carried out in network
representation learning (NRL) field. In the meantime, NRL
is developing in several directions. Based on the network
type, we can divide NRL into static network learning and
dynamic network learning. Based on the training goal, we
can also divide NRL into transductive learning and induc-
tive learning.

2.1 � Static and dynamic network

Static network means that the network is fixed where
neither topological structure nor node attribute changes
over time. In early stage, researchers usually focus on the
topological structure of the network. They first obtain the
adjacency matrix of the network, then use random walk
or matrix decomposition [37] to learn node embeddings.
To name a few, DeepWalk first applies random walks to
generate sequences of nodes over the network and then
employs the Skip-Gram [33] model to learn node embed-
dings [40]. LINE focus on the first-order and second-order
proximity among nodes in the network [46]. node2vec
uses the random walk procedure to balance the breadth-
first and depth-first search strategy [13]. SDNE effectively
captures highly non-linear network structure to generate
node embeddings [53]. GraphSAGE learns a function to
generate node embeddings by sampling and aggregating
features from nodes’ local neighborhood [14]. RGCN
applies the idea of ResNet into GCNs and construct RGCN
to learn the possibility of linkage between two nodes [41].
SGL supplements the classical supervised task of recom-
mendation with an auxiliary self-supervised task, which
reinforces node representation learning via self-discrim-
ination [55].

Unlike static network, dynamic network means that a
network contains dynamic changes that can help research-
ers learn the evolution of the network structure and obtain
more effective embeddings. In the early stages of dynamic
network, researchers usually divide the network into several

states based on the timestamps. The network state at each
timestamp is called a static snapshot of the dynamic net-
work. By comparing the differences between multiple static
snapshots, researchers can learn the evolutionary patterns
of the network over time. To name a few, DySAT computes
node embeddings through joint self-attention along two
dimensions of structural neighborhood and temporal dynam-
ics [43]. EvolveGCN [38] uses a RNN to estimate the GCN
parameters for the future snapshots.

Since there are many interactions in the interval between
two static snapshots, it is difficult to accurately represent net-
work changes, researchers began focusing on learning node
embeddings in temporal network with chronological inter-
active events. To name a few, CTDNE applies a biased or
unbiased random walk procedure to combine temporal infor-
mation into node embeddings [34]. HTNE uses the Hawkes
process to capture the influence of historical neighbors on
the current node [63]. JODIE applies RNNs to estimate the
future embedding of nodes and introduces a novel projec-
tion operator which learns to estimate node embeddings at
any time in the future [24]. TRRN employs transformer-
style self-attention to reason over a set of memories and
considers both updated memories and different factors that
influence node behaviors [57]. HTGN follows the concise
and effective GRNN framework and leverages the power of
hyperbolic graph neural network and facilitates hierarchical
arrangement to capture the topological dependency [60].

2.2 � Transductive and inductive learning

Transductive learning generates fixed node embeddings by
directly optimizing the final state of the network. Most of
the existing approaches for generating node embeddings are
inherently transductive. However, the disadvantage of trans-
ductive learning is that when the network changes, these
approaches need to retrain the whole network to generate
new node embeddings, which involves expensive calcula-
tions. Thus, transductive learning is not suitable for generat-
ing new node embeddings in dynamic networks.

Different from transductive learning, inductive learning
no longer generates fixed node embeddings but focuses on
learning a model that can generate node embeddings at any
time. When a new node is added, the model can directly
calculate the new node embedding using the node’s features
and other information. To name a few, GraphSAGE learns
a function to generate node embeddings by sampling and
aggregating features from nodes’ local neighborhood [14].
DyREP uses RNNs to learn node embeddings while its loss
function is built upon temporal point process [48]. TGAT
leverages GAT to extract node representations where the
nodes’ neighbors are sampled from the history and encodes
temporal information [59]. ER-GNN stores knowledge
from previous tasks as experiences and replays them when

https://github.com/MGitHubL/MNCI
https://github.com/MGitHubL/MNCI

	 M. Liu et al.

1 3

learning new tasks to mitigate the catastrophic forgetting
issue [61].

According to the above classification, our method ConM-
NCI belongs to inductive learning in temporal networks. In
real-world network datasets, temporal networks can rep-
resent network changes accurately, and inductive learning
can capture these changes flexibly. Therefore, our method
ConMNCI is more suitable for generating effective node
embeddings, and we will introduce it in detail below.

3 � Method

3.1 � Problem definition

First, we introduce the basic framework of ConMNCI in
Fig. 2. We use one interaction between two nodes as an
example to explain the process of generating node embed-
dings inductively. Assume that node A interacts with node C
at the current moment. In order to update the node embed-
ding of A, we feed A’s embedding before interaction, the
neighborhood influence embedding and the community
influence embedding into the GRU to generate A’s node
embedding after interaction. In GRU, NG, CG, and UG
are called neighborhood reset gate, community reset gate,
and update gate, which control the update of neighborhood
influence, community influence, and node embedding,
respectively.

Then, according to the time information of node interac-
tion, we can formally define the temporal network.

Definition 1  (Temporal Network) When two nodes inter-
act, it will always be accompanied by a clear timestamp. A
temporal network can be defined as a graph G = (V , E, T) ,
where V and E denote the set of nodes and edges, and T
denotes the set of interactions. Given an edge e(u, v) between
node u and v, there is at least one interaction matching
e(u, v), i.e., T(u, v) = {(u, v, t1), (u, v, t2),⋯ , (u, v, tn)}.

In a temporal network, the data is stored in the tuple of
(u, v, t), where there is one interaction between node n and v
at t. The meaning of interaction varies in different networks.
For example, an interaction in a citation network is a litera-
ture citation, an interaction in an email network is an email
correspondence, and an interaction in a commerce network
is a commodity purchase.

In particular, we define each interaction can be considered
as an edge constructed in two nodes, i.e., one interaction
is one edge. In this case, two nodes may interact multiple
times, and these interactions can be ordered by timestamp.
When two nodes interact, we call them neighbors. The
historical neighbor sequence of a node can be defined as
follows.

Definition 2  (Historical Neighbor Sequence) For each
node u, there is a historical neighbor sequence Hu , which
stores the historical interactions of u up to the current

F

Neighborhood
Influence Embedding

Community
Influence Embedding

Previous
Node Embedding

Fig. 2   ConMNCI Framework

Embedding temporal networks inductively via mining neighborhood and community influences﻿	

1 3

moment, i.e., Hu = {(v1, t1), (v2, t2),⋯ , (vn, tn)} . Each tuple
in the sequence represents an event, i.e., node vi interacts
with u at time ti.

During the interaction of nodes, their neighbors tend to
influence their behavior, which we call neighborhood influ-
ence. In addition, nodes in a network may also be influenced
by the communities. Graph theory proposes two rules to
define the relationship between nodes and communities [10,
11]. According these rules, we can define the community
as follows.

Definition 3  (Community) Communities are the sub-
graphs in a network where (1) nodes in a community are
densely connected, and (2) nodes in different communities
are sparsely connected. Here, we define K communities
C = {c1,⋯ , cK} divided from a network G, where ck is the
kth community ( k ∈ {1,⋯ ,K} ). Each node may may belongs
to one or more communities.

Our goal is to capture neighborhood and community
influences to generate effective node embeddings for down-
stream tasks. The notations and descriptions appearing in
this paper are shown in Table 1.

3.2 � Node Embedding Initialization

For network representation learning (NRL) methods, node
embeddings need to be initialized before training. Unlike the
random initialization used by common methods, we propose
a time positional encoding technology to generate node
embeddings by using time information, which can speed

up the convergence speed of training process. Note that
the positional encoding part is only used to generate initial
node embeddings and does not participate in the subsequent
update process.

To the best of our knowledge, the idea of positional
encoding [52] is first proposed in Natural Language Pro-
cessing (NLP) field. Considering that in many real-world
scenarios, most nodes have no clear feature information for
researchers to obtain prior knowledge. In this case, the initial
time when node u joins a network will be very useful for u,
which should be further exploited.

According to the initial time order, we can obtain an
ordered node sequence Snode = {u1, u2,⋯ , un} . Then, we use
sine and cosine functions with different frequencies to define
the encoding on each dimension in the node embeddings.

Where u is the uth node position number in Snode , d is the
dimension size of node embedding, 2i is the (2i)th dimension
in node embedding, and PE(u,2i) is the encoding for the (2i)th
dimension of the uth node embedding in Snode . Here each
dimension corresponds to a sinusoid, and the wavelengths
form a geometric progression from 2� to 10000 ⋅ 2� [52].
We select sine and cosine functions for coding because they
have the following properties.

Let PEu+k and PEu be the embeddings for the (u + k)th node
and the uth node in Snode , respectively. According to this
property, for any fixed offset k, PEu+k can be formalized
into a linear function of PEu , which means that the function
in (1) can capture the relative time positions of nodes. In this
way, we can obtain the initial node embedding zt0u of node u
at the initial time t0 as follows.

Where ⊕ denotes concatenation operator, and PE(u,i) rep-
resents a position value. After concatenating each position
value to obtain the initial node embedding, we can mine
neighborhood and community influences. Note that both
influences of a node are calculated every time it interacts
with other nodes, thus we omit the time superscript by
default in the following unless we want to distinguish two
variables with different timestamps.

3.3 � Neighborhood Influence

We believe that after an interaction occurs between node
u and v, node v will influence the future interactions

(1)
PE(u,2i) = sin(u∕100002i∕d)

PE(u,2i+1) = cos(u∕100002i∕d)

(2)
sin(u + k) = sin u cos k + cos u sin k

cos(u + k) = cos u cos k − sin u sin k

(3)z
t0
u = PEu = [PE(u,0) ⊕ PE(u,1) ⊕⋯⊕ PE(u,d−1)]

Table 1   Notation

Notation Description

z
tn
u

embedding of node u at time tn
Hu historical neighbor sequence of u
z
ti

(u,i)
temporal embedding of edge e = (u, i, ti)

a(u,i) affinity weight between two nodes
a(u,ck)

affinity weight between node and community
zck embedding of the kth community ck
NE

tn
u

neighborhood influence embedding of u at tn
CO

tn
u

community influence embedding of u at tn
�NE
u

, �CO
u learnable parameter of NEtn

u and COtn
u

E,R,� experience embeddings, number, and buffer
B batch of training data
� dynamic weight in loss function L(u, E)
L(u, v) loss function of neighbor nodes
L(c) loss function of community detection
L(E) loss function of continual learning

	 M. Liu et al.

1 3

of node u with other nodes, and u will also influence
v. Given a node u, we assume that the influence on u
is not only related to neighbor’s own characteristics,
but also related to their interaction time. Therefore, to
mine the neighborhood influence on each node, we will
analyze its neighbors’ embedding and interaction time,
respectively.

Note that in real-world networks, the length of neighbor
sequence may vary significantly over all nodes. To keep
the computational pattern of each batch fixed and more
efficient, we fix the sequence length l and select the latest
L neighbors for each node instead of using full neighbors.
Referencing to previous works [17, 27, 63] and our experi-
ments, the experience value of sequence length L is 5,
we will study the sensitivity of the hyperparameter L in
experiments.

Affinity weight  We assume that there is an affinity
between any two nodes, which reflects the closeness
of their relationship. Given a node u and its neighbor
sequence Hu , we can calculate u’s affinity to different
neighbors. After normalizing these affinities, the affinity
weight a(u,i) for neighbor i on node u can be calculated as
follows.

Where � is the sigmoid function, Hu is node u’s historical
neighbor sequence. We use negative squared Euclidean dis-
tance to measure the affinity between two embeddings.

Temporal Embedding  In temporal networks, network struc-
ture and node behavior will evolve over time. Thus, learning
temporal information is an important way to capture the
evolutionary process of neighborhood influence. In this
stage, we learn a temporal embedding for two nodes based
on their interactive timestamp. Given an interaction (u, i, ti) ,
the temporal embedding zti

(u,i)
 between two nodes at time ti

can be calculated as follows.

Where tc is the current time, F(t) is the encoding function.
For F(t), we adopt random Fourier features to encode time
[3, 31] which may approach any positive definite kernels
according to the Bochner’s theorem [54, 58, 59].

Where � = {�1,⋯ ,�d∕2} is a set of learnable parameters to
ensure that the dimension size of temporal embeddings and
node embedding are the same as d.

(4)a(u,i) =
�(−��zu − zi

��
2
)

∑
i�∈Hu

�(−��zu − zi�
��
2
)

(5)z
ti
(u,i)

= F(tc − ti)

(6)F(t) = [cos(�1t), sin(�1t),⋯ , cos(�d∕2t), sin(�d∕2t)]

Neighborhood influence embedding  Combining affinity
weight and temporal embedding, the neighborhood influ-
ence embedding NEtn

u of u at time tn can be calculated.

Where �NE
u

 is a learnable parameter that regulates u’s neigh-
borhood influence embedding, ztn−1

i
 is the embedding of u’s

neighbor i at time tn−1 , ⊙ denotes element-wise multiplica-
tion. To calculate the influence embedding of the current
timestamp, we need to use the node embedding of the previ-
ous timestamp, which will be introduced later.

3.4 � Community Influence

Here we introduce the concepts of community detection
and community embedding to mine community influence.
Community detection, or more specifically, clustering nodes
based on similar behavior or structure, helps us understand
the inherent influences and patterns of networks [11]. In
real-world networks, nodes in the same community tend to
have similar behavior patterns.

Community detection in temporal networks is more
challenging than traditional community detection, because
community assignments and embeddings will change as the
network evolves. In this paper, we define K communities
C = {c1, ..., cK} and learn an embedding zck for each commu-
nity ck ( k ∈ {1,⋯ ,K} ), where K is a hyperparameter. Given
a node u, it may have different affinities to these communi-
ties. The deeper affinity u is to a community ck , the more
likely u is to belong to ck , and the more influence ck has on u.

For node u, we calculate its affinity with all communi-
ties. Then we normalize these affinities to obtain the affinity
weights of different communities on u. In this case, a com-
munity ck ’s affinity weight �(u,ck)

 on u can be calculated.
Here we also use negative squared Euclidean distance to
measure the affinity between two embeddings.

Unlike general community detection methods that simply
assign nodes to communities, our insight for assigning
nodes is to have the capability to represent the membership
strength of nodes to communities over time. By calculating
the affinity weight between each community and node, we
are able to obtain the community assignment at any time.

It is worth noting that we have considered two community
patterns, i.e., non-overlapping communities and overlapping
communities.

(7)NEtn
u
= 𝛿NE

u

∑

i∈Hu

a(u,i)z
ti
(u,i)

⊙ z
tn−1
i

(8)a(u,ck) =
�(−

���zu − zck
����

2)

∑
ck� ∈C

�(−
���zu − zck�

���
2

)

Embedding temporal networks inductively via mining neighborhood and community influences﻿	

1 3

Non‑overlapping communities   It means that a node will
only belong to the community with the greatest affinity.
In this case, if a community ck has the the highest affinity
weight to node u at time tn , after updating u’s embedding
from ztn−1u to ztnu  , we will dynamically update ck ’s embedding,
i.e., we consider that u belongs to ck at time tn.

Based on the non-overlapping pattern, we calculate a distri-
bution p(ck|u) for each node u [45], where p(ck|u) = a(u,ck) .
Since a node will only belong to one community, the optimi-
zation objective for the community part is to maximize the
affinity of node u with community ck it belongs to.

Overlapping communities  It means that a node will belong
to more than one community, and the node has different
affinities to different communities. In this case, each com-
munity embedding will be updated with a different affinity
weight in combination with node u’s embedding zu.

Based on the overlapping pattern, in addition to calculating
the distribution p(ck|u) for each node u, we also calculate a
distribution p(v|ck) for each community ck [45].

Since a node belongs to more than one community, it
means that a node will interact with different nodes based
on different community contexts. Thus, the process of nodes
interacting and becoming neighbors can be formulated in a
probabilistic way to optimize the generation of community
embeddings.

Here we choose the pattern of non-overlapping communi-
ties by default, which depends on the datasets used for the
experiment.

Community influence embedding Finally, the commu-
nity influence embedding COtn

u of node u at time tn can be
calculated, where �CO

u
 is a learnable parameter that regu-

lates u’s community influence embedding.

(9)zck ∶= zck − ztn−1
u

+ ztn
u

(10)L(c) =
∑

u∈V

max
ck∈C

(log p(ck|u)) =
∑

u∈V

max
ck∈C

(log a(u,ck))

(11)for each ck ∈ C, zck ∶= zck − a(u,ck) × (ztn−1
u

− ztn
u
)

(12)p(v�ck) =
�(−

���zv − zck
���
2

)

∑
v�∈V �(−

���zv� − zck
���
2

)

(13)L(u, c) =
∑

u∈V

∑

ck∈C

∑

v∈Hu

log p(v|ck)p(ck|u)

(14)COtn
u
= �CO

u

∑

ck∈C

a(u,ck)zck

It is worth noting that the community influence embedding
represents the community influence of a single node, while
the community embedding represents a single community,
they are not the same.

3.5 � Aggregator Function

The GRU network can capture the temporal patterns of
sequential data by controlling the aggregation degree of
different information and determining the proportion of
historical information to be reversed [7, 56]. In this paper,
we extend GRU to devise an aggregator function, which
combines neighborhood and community influences with
the node embeddings at the previous timestamp to gener-
ate the node embeddings at the current timestamp. The
aggregator function is defined as follows.

Here � is the sigmoid function, ⊕ denotes concatenation
operator, ⊙ denotes element-wise multiplication. NEtn

u  , COtn
u

and ztnu are neighborhood influence embedding, commu-
nity influence embedding and node u’s embedding at time
tn , respectively. WUG,WNG,WCG,Wz ∈ ℝ

d×3d , bUG, bNG ,
bCG, bz ∈ ℝ

d are learnable parameters, UGtn
u ,NG

tn
u ,CG

tn
u ∈ ℝ

d
are called update gate, neighborhood reset gate, and com-
munity reset gate, respectively.

Here we divide the reset gate in GRU into two reset
gates, i.e., neighborhood reset gate NGtn

u and community
reset gate CGtn

u  . We use NGtn
u and CGtn

u to control the reser-
vation degree of neighborhood and community influence
embeddings, respectively. Then, we aggregate the node
embedding at the previous timestamp with reserved neigh-
borhood and community influence embeddings to obtain
a new hidden state z̃tnu at the current timestamp. Finally,
we use UGtn

u to control the reservation degree of histori-
cal information. Based on the node embedding ztn−1u at the
pervious timestamp and the new hidden state z̃tnu at the
current timestamp, we can obtain a node embedding ztnu at
the current timestamp. In this way, we can calculate node
embeddings inductively.

Note that during the training process, we process one
batch of data at a time and update all node embeddings
in this batch. This has the same effect as updating the

(15)UGtn
u
= 𝜎(WUG[z

tn−1
u

⊕ NEtn
u
⊕ COtn

u
] + bUG)

(16)NGtn
u
= 𝜎(WNG[z

tn−1
u

⊕ NEtn
u
⊕ COtn

u
] + bNG)

(17)CGtn
u
= 𝜎(WCG[z

tn−1
u

⊕ NEtn
u
⊕ COtn

u
] + bCG)

(18)
z̃tn
u
= tanh(Wz[z

tn−1
u

⊕ (NGtn
u
⊙ NEtn

u
)⊕ (CGtn

u
⊙ COtn

u
)] + bz)

(19)ztn
u
= (1 − UGtn

u
)⊙ ztn−1

u
+ UGtn

u
⊙ z̃tn

u

	 M. Liu et al.

1 3

embedding for one node at a time, unless a node inter-
acts multiple times in the same batch. This is because that
when there are multiple interactions about the same node
in a batch, only last interaction will be used to update
the embedding of this node, and other interactions will be
discarded. But when the batch size is small (batch size ≤
128), this problem will rarely occur and can be ignored.

On the other hand, when one batch of data is fed into
GRU, how to calculate the current embedding based on the
previous embedding? Suppose that the interaction sequence
of node u is {(u, v1, t1), (u, v2, t2), (u, v3, t3), ..., (u, vn, tn)} .
When we process the interaction (u, v3, t3) , the current times-
tamp for u is t3 , while the previous timestamp for u is t2 .
In the real training process, we only need to save all node
embeddings of the previous timestamp. More specially, we
create a global tensor to save all node embeddings and write
a node embedding back to the tensor only when this node
embedding is updated in training. At any time, node embed-
dings in this tensor can be considered as the embeddings at
the previous timestamp.

3.6 � Continual Learning

Continual learning can learn over time continually by captur-
ing and transforming new information while retaining previ-
ous knowledge or experiences [9, 39, 47]. The main challenge
of continual learning is to be catastrophic forgetting in the
learninig process [12, 42], i.e., a model will forget old experi-
ences in the process of learning new information [29, 30, 39].
In the worst scenario, the old knowledge learned by the model
will be completely overwritten by the new knowledge.

To alleviate the catastrophic forgetting problem, research-
ers focus on learning multiple tasks sequentially [20, 32]. In
particular, they store knowledge from previous tasks as experi-
ences and replays them when learning new tasks [61]. Inductive
learning (IL) has many similarities to continual learning (CL).

(1)	 CL divides a task into multiple subtasks with the same
objective, and each subtask corresponds to a sub-data-
set. IL also keeps the same objective during training,
and learns the model from the dataset in batches.

(2)	 CL generalizes the experience from the previous tasks
for the subsequent tasks. IL also summarizes node
interaction patterns from previous batches of training,
and continually adjusts parameters for subsequent train-
ing.

(3)	 CL faces the catastrophic forgetting problem in learn-
ing, where old knowledge is overwritten by new knowl-
edge. IL also faces this problem, where parameters are
biased towards new batches of data during training.

(4)	 The core problem with CL is that tasks change before
and after. IL built on the temporal network had to face

similar changes, i.e., the evolution of the network over
time.

Due to the similarity, we introduce the idea from continual
learning [47] used to alleviate catastrophic forgetting problem
to enhance inductive learning, thus constraining the stable
update of parameters and node embeddings during training.

Specifically, we construct the experience buffer � to
hold experience node embeddings for each batch. Note
that although conventional CL methods usually select real
nodes, in a temporal network, the selected experience nodes
may undergo new interactions in subsequent training batch,
i.e., their embeddings will update over time. Therefore, we
directly select experience node embeddings.

Here we introduce the self-attention mechanism [1, 2]
to select top-R experience embeddings for each batch. An
attention function can be considered as the scaled dot-prod-
uct calculation consisting of queries, keys, and values [52,
62].

Where Q,K,V ∈ ℝ
|B|×d denotes the “queries”, “keys”, and

“values”, respectively. Here d is the size of embedding
dimension, and |B| is the size of a batch B. The node embed-
dings in a batch B is denoted as Z ∈ ℝ

|B|×d , thus we can use
three parameter matrices WQ,WK,WV ∈ ℝ

d×d to generate
Q,K,V respectively. Specially, Q = ZWQ , K = ZWK , and
V = ZWV.

Our goal is to find the top-R most representative embed-
dings from Z as experience embedding set E . Let qi , ki , vi
be the ith row in Q , K , V respectively. Inspired by [49, 62],
we can define the attention function as a probability-based
kernel function.

Where the kernel function k(qi, kj) denotes the asymmetric
exponential kernel exp(qik

T
j
∕
√
d) , and the probability p(kj|qi)

is equal to k(qi, kj)∕
∑

l k(qi, kl) . In this way, the attention
function encourages the query’s attention probability dis-
tribution corresponding to dominant dot-product pairs away
from the uniform distribution. Let q(kj|qi) = 1∕|B| denotes the
uniform distribution, we can calculate the difference between
p(kj|qi) and q(kj|qi) to distinguish the representative embed-
dings. Specially, we use the Kullback-Leibler divergence [21,
62] to measure the representativeness as follows.

(20)Att(Q,K,V) = softmax

�
QKT

√
d

�
V

(21)Att(qi,K,V) =
�

j

k(qi, kj)∑
l k(qi, kl)

vj = �p(kj�qi)[vj]

(22)KL(q��p) = ln

�B��

j=1

e

qik
T
j√
d −

1

�B�

�B��

j=1

qik
T
j

√
d

− ln �B�

Embedding temporal networks inductively via mining neighborhood and community influences﻿	

1 3

When we calculate and compare the Kullback-Leibler diver-
gence for each query, the constant ln |B| can be omitted. Thus
the ith query’s representativeness measurement (RM value)
can be defined as follows.

The larger the RM value is, the more representative the
query is. Note that we need to calculate all dot-product pairs
to obtain the RM value for each query, which means large
and complex calculations. To simplify this process, we use
an empirical approximation for the calculation. According to
[62], for each query qi ∈ ℝ

d , we have the bound as follows.

In this way, we only need to calculate the max value
of (qik

T
j
∕
√
d) to obtain the representativeness of each

query. Then we select the most representative top-R node
embeddings as experience embedding set E and put them
into the experience buffer � , i.e., � = � ∪ E . Embeddings
in the experience buffer will be used in the optimization
process, thus forcing the average node embeddings gen-
erated in subsequent batches to be as similar as possible
to the experience embeddings. Specially, we randomly
choose R embeddings from the buffer � into the optimi-
zation process, and the selected embeddings may come
from different batches.

By adding a new constraint in the original loss function,
we attempt to consolidate the old experience as we learns
new experience. Assuming that the original loss function is
L, the new loss function can be formulated as follows.

Here |B| is the size of a batch B, R is the number of the selected
experience embeddings, � is the dynamic weight which will
change with the changes of |B| and R. Since we calculate the
final loss for each node while L(E) is for each batch, we want
to scale it by a certain percentage (i.e., � ) to each node loss.

To the best of our knowledge, we are the first to compare con-
tinual learning with inductive representation learning. This work
may provide an initial attempt to exploit continual learning for
inductive representation learning and open up new research

(23)RM(qi,K) = ln

�B��

j=1

e

qik
T
j√
d −

1

�B�

�B��

j=1

qik
T
j

√
d

(24)

ln �B� ⩽ RM(qi,K) ⩽ maxj{
qik

T
j

√
d
} −

1

�B�

�B��

j=1

qik
T
j

√
d

+ ln �B�

(25)L ∶= L + �L(E)

(26)L(E) = log �(−
‖‖‖‖‖

1

|B|
∑

u∈B

ztn
u
−

1

R

∑

i∈E

�i

‖‖‖‖‖

2

)

(27)� = R∕(|B| + R)

possibilities. Moreover, we also verify the effectiveness of con-
tinual learning for network embedding in the experiments.

3.7 � Model Optimization

To learn node embeddings in a fully unsupervised setting,
we apply a network-based loss function, and optimize it
with the Adam method [19].

This loss function can be divided into three parts, i.e., loss
function L(u, v) based on neighbor nodes, loss function L(c)
based on community detection, loss function L(E) based on
continual learning as shown in Eq. (26).

For the loss function L(u, v) based on neighbor nodes,
we define the interaction between node u and v as a posi-
tive sample, while all other nodes not in the neighborhood
of u are negative samples. Thus the optimization objective
is to encourage nearby nodes (positive sample) to have
similar embeddings while enforcing that the embeddings
of disparate nodes (negative sample) are highly distinct.

However, this will result in a huge amount of computa-
tion. Thus we introduce negative sampling, in which only
a portion of negative samples are randomly selected for
computation. In this way, we construct the loss function
L(u, v) and use negative squared Euclidean distance to
measure the similarity between two embeddings.

Here Pn(v) is a negative sampling distribution, Q is the num-
ber of negative samples.

For the loss function L(c) based on community detec-
tion, we encourage each node to have high affinity with the
community it belongs to. According to the two patterns of
non-overlapping communities and overlapping communi-
ties, we select (10) or (13) as L(c), respectively.

When we choose the overlapping pattern, the loss function
L(u, c) will face the enormous computation cost. Because
in (12), the affinity of each node v′ in the network with
community ck needs to be calculated. Thus, we also use
negative sampling and the sampled nodes only need to fol-
low (29). This is because we only need to ensure that the
negative nodes have not interacted with node u.

(28)L =
∑

u∈V

∑

v∈Hu

L(u, v) + L(c) + �L(E)

(29)

L(u, v) = log �

(
−
‖‖‖z

tn
u
− ztn

v

‖‖‖
2
)
− Q ⋅ Evn∼Pn(v)

log �

(
−
‖‖‖z

tn
u
− ztn

vn

‖‖‖
2
)

(30)L(c) =

⎧
⎪
⎨
⎪
⎩

∑
u∈V

max
ck∈C

(log p(ck�u)), non-overlapping
∑
u∈V

∑
ck∈C

∑
v∈Hu

log p(v�ck)p(ck�u), overlapping

	 M. Liu et al.

1 3

3.8 � Complexity Analyses

In this part, we analyze the complexity of ConMNCI. The
procedure for ConMNCI is shown in Algo. 1.

Suppose that the number of nodes and edges in the graph
are |V| and |E|, respectively. Let t be the number of epochs,
s be the number of batches ( s = |E|∕|B| ), |B| be the size of
each batch, d be the embedding size, L be the length of the
historical neighbor sequence, K be the number of commu-
nities, R be the number of experience embeddings in each
batch, and Q be the number of negative sample nodes.

According to Algo. 1, we can divide ConMNCI into five
parts: Initialization, Batch Training, Updating Community
Embedding, Loss Function Optimization, and Selecting
Experience Embeddings. We first calculate the time com-
plexity of each part and then accumulate them.

1.	 Initialization (lines 1-3). In this part, we initialize node
embedding, community embedding and experience
buffer. For node embedding, according to (1)-(3), there
are |V| nodes in the network and we generate a d-dimen-
sional embedding for each node, thus the time complex-
ity is O(d|V|). For community embedding, we randomly
generate K community embeddings, which time com-
plexity is O(Kd). For experience buffer, its complexity
is a constant. Therefore, the time complexity of this part
is O(d|V| + Kd).

2.	 Batch Training (lines 6-10). In this part, we discuss the
complexity of calculating NEtn

u  , COtn
u  , and ztnu separately.

According to (4)-(7), calculating NEtn
u can be done in

time complexity of O(L(Ld + d)) = O(L2d) . According
to (8) and (14), if we select the non-overlapping pat-
tern, calculating COtn

u can be done in time complexity
of O(K2d) . According to (15)-(19), calculating ztnu can
be done in time complexity of O(3d2 + d2) = O(d2) .
Thus, the time complexity of traing one batch data is
O(|B|(L2d + K2d + d2)).

3.	 Updating Community Embedding (line 11). In this part,
we first assign nodes to communities based on their
affinities, and then update the community embeddings
based on node embeddings. According to (9) and (10), if
we select the non-overlapping pattern, the time complex-
ity of this part is O(|B|(K + d)).

4.	 Loss Function Optimization (line 12). In this part,
according to (28), we need to discuss the complexity
of three loss functions L(u, v), L(c), and L(E) sepa-
rately. According to (29), the complexity of calcu-
lating L(u, v) is O(|B|LQd), where L is the neighbor
sequence length and Q is the number of negative sam-
ples. According to (30), the complexity of calculating
L(c) is O(|B|K2d) . According to (26), the complexity
of calculating L(E) is O(|B|d + Rd) , where R is the
number of experience embeddings in each batch. After
calculating the above three loss functions, ConMNCI
needs to perform backpropagation to optimize the
model parameters. The parameters to be optimized are
{�NE

u
, �CO

u
} , {WUG,WNG,WCG,Wz} , {bUG, bNG, bCG, bz} ,

and {Q,K,V} , and the time complexity of optimizing

Embedding temporal networks inductively via mining neighborhood and community influences﻿	

1 3

BIT otc/alpha	� [22, 23] are two datasets taken from two
bitcoin trading platforms OTC and Alpha,
respectively. A member will rate other
members in a scale of -10 (total distrust)
to +10 (total trust) in steps of 1 after the
transaction. We assume every three score
steps into one category, thus there are
seven categories, e.g., users with scores
-10, -9 and -8 are in the same category.

ML1M	� [25] is a widely used movie dataset (ver-
sion MovieLens-1M). For each movie, we
choose the score that people rated most
as its label. Since the score is an integer
between 1 and 5, we divide all movies into
five categories.

AMms	� [35] is a magazine subscription dataset
from the Amazon website. For each mag-
azine, we choose the score people rated
most as its label and also divide all maga-
zines into five categories.

Yelp	� [63] is a challenge dataset from the Yelp
website. In this real-world network, users
and businesses are defined as nodes, and
commenting behaviors are taken as edges.
Each business is assigned either one or
more categories. We only retain business
in the top-5 categories. If a business has
more than one category, we assign the top
one category as the business’s label.

4.2 � Baselines

We compare ConMNCI with six state-of-the-art baselines.
Each of these methods represents a category of related work.

DeepWalk	� [40] first applies random walks to generate
sequences of nodes over the network and
then employs the Skip-Gram [33] model to
learn node embeddings, which is a classic
method in the field of NRL.

node2vec	� [13] uses the random walk procedure to
balance the breadth-first and depth-first
search strategy, which is a static transduc-
tive method.

Table 2   Description of the
datasets

Datasets DBLP BITotc BITalpha ML1M AMms Yelp

Nodes 28,085 5,881 3,783 9,746 74,526 424,450
Edges 236,894 35,592 24,186 1,100,209 89,689 2,610,143
Labels 10 7 7 5 5 5
Timestamps 25 22,115 981 10,850 5,082 70

these parameters is O(d + 3d2 + |B|d2) = O(|B|d2) .
Thus, the time complexity of this par t is
O(|B|LQd + |B|K2d + Rd + |B|d2).

5.	 Selecting Experience Embeddings (lines 13 and
14). In this part, we need to discuss the complexity
of self-attention value, RM value, and top-R selec-
tion separately. According to (20) and (21), the time
complexity of calculating self-attention value is
U(|B|d2 + |B|2 + |B|2d) . According to (22)-(24), the
time complexity of calculating RM value is O(|B|d).
The time complexity of conducting top-R selection
is O(|B|d). Thus, the time complexity of this part is
O(|B|d2 + |B|2 + |B|2d + |B|d + Rd) = O(|B|d2 + |B|2d + Rd).

In summary, considering the number of epochs t and the
number of batches s, the total time complexity of ConMNCI
can be calculated as follows.

Considering that L, K, R, Q are small constants, the
time complexity of ConMNCI can be simplified as
O(d|V| + ts(|B|d2 + |B|2d)).

4 � Experiments

We compare ConMNCI with six state-of-the-art baselines
and conduct experiments on six real-world datasets.

4.1 � Datasets

We list the statistical information of the following six real-
world network datasets in Table 2.

DBLP	� [63] is a co-authorship dataset of Computer
Science domain taken from DBLP which
has ten research fields. If more than half of
a researcher’s last ten papers are published
in a particular research field, we assume
that this researcher belongs to this field.

(31)

O((d|V| + Kd) + ts(|B|(L2d + K2d + d2) + |B|(K + d)+

(|B|LQd + |B|K2d + Rd + |B|d2) + (|B|d2 + |B|2d + Rd)))

= O(d|V| + ts(|B|(L2d + K2d + d2) + |B|LQd + Rd + |B|2d))

	 M. Liu et al.

1 3

GraphSAGE	� [14] learns a function to generate node
embeddings by sampling and aggregating
features from nodes’ local neighborhood,
which is a static inductive method.

HTNE	� [63] uses the Hawkes process to capture
influence of historical neighbors on the
current node, which is a dynamic temporal
transductive method.

DyREP	� [48] uses RNNs to learn node embeddings
while it loss function is built upon temporal
point process, which is a dynamic temporal
inductive method.

EvolveGCN	� [38] uses a RNN to estimate the GCN
parameters for the future snapshots, which
is a static snapshot transductive method.

4.3 � Tasks and Evaluation Measures

First, we compare ConMNCI with baselines on three funda-
mental tasks: node classification, network visualization, and
link prediction. Note that Network Embedding for node clas-
sification can be considered as supervised learning, because
node classifiers are trained based on node labels. Network
Embedding for network visualization and link prediction can
be considered as unsupervised learning, because node labels
are not involved in these tasks.

Node Classification:	� We train a classifier to predict
node labels using node embed-
dings. In this task, we use both
Accuracy and Weighted-F1 as
metrics.

Network Visualization:	� We select some nodes with dif-
ferent labels and project them
onto a 2-dimensional space,
then observe the selected nodes’
ditributions in the 2-dimensional
space.

Link Prediction:	� Based on two node embeddings,
we can calculate their dot prod-
uct to determine whether there
is an edge between these two
nodes. We use both the AUC
score and Accuracy as metrics.

 Then we perform ablation study and parameter sensitivity
study to further evaluate ConMNCI.

Ablation Study:	� We evaluate the performance
improvements of positional
encoding, neighborhood
and community influences,

and continual learning for
ConMNCI.

Parameter Sensitivity Study:	� We evaluate the effect
of several hyperpa-
rameters on the per-
formance, such as the
embedding dimension
size d, the length of
neighbor sequence l,
and the number of com-
munities K, etc.

4.4 � Parameter Settings

For all methods, we set the embedding dimension size d,
the learning rate, the batch size b, the number of negative
samples Q, the length of neighbor sequence L, and the num-
ber of communities K to be 128, 0.001, 128, 10, 5, and 10,
respectively. We use default values for other parameters in
baselines.

In our datasets, the data is arranged chronologically in
(u, v, t) format. For each dataset, we sort all interactions and
split the total interaction time range [t0, tn] into two inter-
vals: [t0, ttrain) , [ttrain, tn]. The interactions in these two time
intervals are used for training and testing, respectively. Note
that We fix ttrain∕tn = 80%, i.e., we select the top 80% of
each dataset as the training set, and the rest 20% as the test
set. If the same timestamp interactions are assigned to both
training set and test set, we assign all interactions at this
timestamp to the training set. This is because in our experi-
ments, we use interactions that occurred in the past to predict
possible future interactions. Therefore, the training and test
sets should be divided strictly in chronological order.

4.5 � Node Classification

Here we train a Logistic Regression function as the classifier
to perform 5-fold cross-validation to predict node labels.
Then we evaluate the classification results on all datasets by
Accuracy and Weighted-F1.

From Table 3, it is observed that ConMNCI achieves
the best performance. In addition, HTNE, DyREP and
EvolveGCN perform better than Deepwalk, node2vec and
GraphSAGE in most cases, which demonstrates that the
acquisition of dynamic information is critical for learning
effective network representations. Compared with Graph-
SAGE and HTNE that use neighborhood interactions,
ConMNCI focuses on both neighborhood and community
influences, leading to further performance improvements.

Note that all methods’ results are close on AMms. This
is because that the average degree of each node is 2.40 in
AMms, i.e., most nodes may interact with only one neighbor

Embedding temporal networks inductively via mining neighborhood and community influences﻿	

1 3

in AMms. The topology of AMms looks like a longer chain,
which leads to poor performance of all methods on AMms.

4.6 � Network Visualization

We employ the t-SNE method [28] to project node embed-
dings on DBLP to a 2-dimensional space. In particular, we
select three fields and 500 researchers in each field. Selected
researchers are shown in a scatter plot, in which different
fields are marked with different colors, i.e., green for data
mining, purple for computer vision, blue for computer
network.

As shown in Fig. 3, both DeepWalk, node2vec, and
GraphSAGE failed to separate the three fields clearly.
HTNE, DyREP and EvolveGCN can only roughly distin-
guish the field boundaries. ConMNCI separates the three

fields clearly, and one of them has a clear border, which
indicates that ConMNCI has better performance.

4.7 � Link Prediction

For all datasets, we use both Area Under the ROC Curve
(AUC) [15] and Accuracy as metrics to compare ConMNCI
with baselines for link prediction.

In the training set, we first generate node embeddings
by applying ConMNCI and baselines. In the test set, we
sample a certain number of node pairs connected by inter-
actions as positive samples and sample the same number
of node pairs without interactions as negative samples.
Then we calculate the dot product of their embeddings for
each pair of nodes and use the sigmoid function to normal-
ize the dot product as the interaction probability.

Table 3   Node classification results of all methods on all datasets

Metric(%) method DBLP BITotc BITalpha ML1M AMms Yelp

Accuracy DeepWalk 61.40±0.55 59.07±1.33 72.94±2.87 60.29±0.25 57.80±0.33 50.67±0.89
node2vec 62.49±1.16 59.58±0.44 74.95±0.28 61.96±0.62 57.72±0.02 51.35±0.43
GraphSAGE 63.31±0.53 60.03±0.68 73.89±0.35 61.24±0.59 57.63±0.16 51.84±1.16
HTNE 63.47±0.38 59.99±0.67 76.35±0.85 58.90±1.48 57.67±0.01 52.73±0.16
DyREP 62.59±2.42 61.00±0.69 74.30±1.41 60.23±0.88 57.55±0.34 52.09±0.27
EvolveGCN 62.64±1.87 59.28±0.62 78.58±0.13 56.64±0.75 58.48±0.01 50.93±1.79
ConMNCI 64.65±0.37 62.94±0.42 79.43±0.11 62.89±0.24 58.87±0.07 54.17±0.15

Weighted-F1 DeepWalk 61.07±2.78 51.20±0.67 67.61±4.41 58.63±1.88 42.52±0.29 39.81±1.15
node2vec 62.10±0.54 51.23±0.59 68.32±2.84 58.36±0.83 42.48±0.85 41.84±1.82
GraphSAGE 62.39±0.55 51.05±0.69 67.50±0.41 57.66±1.02 42.16±1.25 40.65±1.92
HTNE 63.07±0.54 51.09±1.17 68.06±0.88 54.15±0.22 42.55±0.15 41.80±1.29
DyREP 62.03±1.23 51.14±1.13 68.43±0.49 57.29±0.71 42.48±0.31 40.93±1.79
EvolveGCN 61.98±2.34 51.79±0.82 67.83±2.21 59.65±0.24 41.53±0.85 39.94±2.23
ConMNCI 64.43±0.82 51.72±1.23 68.64±0.57 60.85±0.77 42.68±0.94 43.07±1.02

Fig. 3   Network visualization

	 M. Liu et al.

1 3

For AUC, we sort all interaction probabilities in
descending order and assume that there are edges between
each node pair of the top-half. By comparing the truth on
node pairs, we can obtain the AUC score. For Accuracy,
we set a threshold value of 0.5 to evaluate the prediction
result. When the probability (normalize dot product) of a
node pair is greater than 0.5, we consider that there exists
an edge between this node pair.

As shown in Table 4, it can be seen that ConMNCI has
the best performance on all datasets, which demonstrates
the ability of ConMNCI to capture interactive information.
We also find that all methods obtain poor performance on
dataset ML1M and AMms. According to the Table 2, we can
find that the average degree of each node is 2.40 and 225.77,
respectively. Compare with the other datasets whose average
degrees are all in the interval (12,17), the network structure
of datasets ML1M and AMms are very special. We assume
that for such datasets with too large or too small average
degrees, researchers need to design targeted methods. This
may be a new research direction for further grounding of
network representation learning in industry.

In addition, through the experimental results we find that
methods such as HTNE which exploits the interaction time
are more effective than methods such as Deepwalk which
only focuses on the network structure. Combined with the
above experiments, we believe that temporal information is
very useful for capturing the network evolution process and
should be paid more attention and further utilized.

4.8 � Ablation Study

Here, we construct several variants of ConMNCI to study
the role of positional encoding, community and neighbor-
hood influences, and continual learning, respectively.

4.8.1 � Positional Encoding

Different from the existing NRL methods, we use positional
encoding instead of random initialization to generate the ini-
tial embedding. To compare their differences, we construct
two variants based on positional encoding (PE) and random
initialization (RI) to initialize node embeddings.

Although there is no significant difference between the
final performance of PE and RI through experiments, PE
is much faster than RI in raising the loss function’s con-
vergence speed. Since one epoch represents one complete
training on the whole dataset, we use epoch number as a
metric to measure the convergence speed.

On DBLP, when the performance is almost the same, RI
requires 30 epochs to converge, while PE only needs 10
epochs. The convergence speed of the latter is 3 times as
fast as the former. On BITotc and BITalpha, the conver-
gence speeds of RI and PE are 20 and 5 epochs respectively.
The convergence speed of the latter is 4 times as fast as the
former. The results demonstrate that positional encoding
can accelerate the convergence speed of ConMNCI without
reducing performance, which is especially applicable for
large-scale datasets.

4.8.2 � Neighborhood and Community Influences

In GRU, we aggregate three types of information: node
embedding, neighborhood influence and community
influence. Here, we evaluate the improvement brought by
neighborhood and community, respectively.

Let ConMNCI.z be a variant of ConMNCI which only
aggregate node embedding, i.e., z̃tnu = tanh[Wzz

tn−1
u + bz] .

ConMNCI.zn denotes a variant that only aggre-
gate neighborhood inf luence and node embed-
d i n g , i . e . , z̃

tn
u = tanh[Wz(z

tn−1
u + NG

tn
u ⋅ NE

tn
u) + bz]  .

Table 4   Link prediction results
of all methods on all datasets

Metric(%) method DBLP BITotc BITalpha ML1M AMms Yelp

AUC​ DeepWalk 82.53±1.53 51.99±1.44 55.58±1.35 46.35±1.24 54.83±2.11 77.40±0.82
node2vec 81.73±2.76 57.99±1.42 62.45±1.03 50.12±2.56 52.28±3.93 84.26±2.07
GraphSAGE 84.52±1.48 59.67±1.62 69.64±2.56 50.55±3.77 55.54±0.94 85.53±0.83
HTNE 88.68±0.99 71.45±1.83 74.01±1.77 50.21±0.96 57.41±2.54 88.21±0.87
DyREP 87.63±1.52 71.12±2.12 73.42±0.89 50.69±1.43 58.07±2.42 86.64±3.46
EvolveGCN 85.54±2.34 71.79±0.11 71.64±1.32 53.87±1.23 51.43±0.75 79.53±4.82
ConMNCI 89.66±1.03 74.77±0.89 74.32±0.76 54.13±1.31 59.34±0.57 87.29±1.24

Accuracy DeepWalk 52.25±0.71 53.90±0.66 53.99±1.25 50.04±0.89 50.67±1.33 51.74±0.76
node2vec 50.09±0.89 50.17±1.12 50.31±0.57 50.08±0.08 50.00±0.07 50.02±0.13
GraphSAGE 66.62±0.78 55.39±0.64 55.50±0.35 50.49±1.23 53.32±0.82 50.23±1.17
HTNE 73.57±0.64 59.12±0.88 62.38±1.62 46.39±0.58 56.87±2.03 52.90±0.96
DyREP 72.03±0.72 60.49±1.63 64.33±0.79 50.23±2.13 54.54±1.22 51.48±0.97
EvolveGCN 71.48±1.23 61.79±0.64 68.83±0.21 49.53±0.85 53.52±1.43 49.46±3.11
ConMNCI 78.04±0.53 69.72±0.62 69.36±0.64 50.58±1.42 57.00±0.13 52.99±1.03

Embedding temporal networks inductively via mining neighborhood and community influences﻿	

1 3

ConMNCI.zc denotes a variant that only aggre-
gate community influence and node embedding, i.e.,
z̃
tn
u = tanh[Wz(z

tn−1
u + CG

tn
u ⋅ CO

tn
u) + bz].

We evaluate these variants of ConMNCI via node clas-
sification task. As shown in Fig. 4, when neighborhood
and community influences are not used, the performance
is the worst. The performance is improved when we use
community influence or neighborhood influence. Note that
ConMNCI.zn is better than ConMNCI.zc, which means
that both of two influences are effective, and neighborhood
influence is more important than community influence.

Comparing the two datasets’ performance, the perfor-
mance improvement of neighborhood influence on DBLP
is greater than that on AMms. Since in Table 2, the aver-
age degree of each node in DBLP and AMms is 16.87

and 1.20, respectively. Therefore, the nodes in DBLP are
more sensitive to neighborhood influence than nodes in
AMms, because nodes in DBLP have more interactions
with neighbors. Therefore, when we consider neighbor-
hood influence, the performance improvement of ConM-
NCI on DBLP is greater than that on AMms.

4.8.3 � Continual Learning

In this paper, we introduce the concept of continual learn-
ing, which constrain the method to keep sensitive to the
old knowledge when training new data. To demonstrate the
validity of continual learning, we define the method without
continual learning is MNCI, and compare with ConMNCI
via node classification task on all datasets.

Fig. 4   Ablation study of com-
munity and neighborhood
influences

44.56

48.72

60.97
64.35

42.99

47.83

54.41

58.74

40

50

60

70

ConMNCI.z ConMNCI.zc ConMNCI.zn ConMNCI

)
%(ycaruccA

DBLP

AMms

Fig. 5   Ablation study of con-
tinual learning

Yelp AMms ML1M BITotc DBLP BITalpha
MNCI 53.34 58.74 61.37 62.56 63.95 78.42
ConMNCI 54.29 58.87 62.55 62.94 64.91 79.23

40

45

50

55

60

65

70

75

80

)
%(ycaruccA

	 M. Liu et al.

1 3

As shown in Fig. 5, even the performance improvement
varies across datasets, ConMNCI still outperforms MNCI
on all datasets. By comparing the improvements on differ-
ent datasets, we find that continual learning seems to work
better on a large scale datasets. The results demonstrate the
effectiveness of continual learning, which is worthy of fur-
ther research.

4.9 � Parameter Sensitivity Study

We evaluate the effect of the embedding dimension size d,
the length of neighbor sequence L, and the community num-
ber K on the performance of ConMNCI, respectively.

4.9.1 � Embedding dimension size

To evaluate the effect of embedding dimension size d on
the performance of NRL methods, we conduct node clas-
sification experiment on three datasets: DBLP, AMms, and
BITotc. Specially, we fix the other parameter settings and
vary d from 32 to 512 to test the performance on ConMNCI
and baselines. To evaluate these methods via node classifica-
tion task, we use Accuracy as a metric.

As shown in Table 5, we find that the embedding size has
little effect on the performance of ConMNCI and it performs

the best overall. Note that GraphSAGE does not achieve the
best performance on DBLP dataset when d is 128, and simi-
larly HTNE on AMms. But we can also find that the perfor-
mance (63.31%) of GraphSAGE with d=128 are very close
to the best performance (63.40%), and so is HTNE (57.67%
vs. 57.68%). In addition, all other methods achieve the best
performance when d is 128. By comparing the experimental
results on the three datasets, we speculate that due to random
initialization in training process, HTNE and GraphSAGE do
not achieve the best performance at d=128.

However, another issue has drawn our attention. Why do
almost all methods work best when d is 128? In the field
of Network Embedding, most of the work [13, 24, 40, 46,
53] sets d=128 by deafult and obtains best performance
in experiments. This phenomenon could be explained as
follows.

When d is less than 128, with the increase of dimen-
sion size, the representation ability of node embedding is
enhanced and thus the performance is improved. But when
d is greater than 128, the performance begins to decline.
We have two speculations about this phenomenon. On the
one hand, as the dimension size increases, more noise may
be introduced into node embeddings, which interferes with
the performance. On the other hand, the embeddings of two
similar nodes will show similarity in more dimensions as the
dimension size increases, thus causing difficulties in node
classification.

Table 5   Parameter sensitivity of
dimension size d 

Accuracy(%)

dataset method d=32 d=64 d=128 d=256 d=512

DBLP DeepWalk 59.90 60.57 61.40 61.29 60.51
node2vec 62.12 62.46 62.49 62.07 62.49
GraphSAGE 62.39 63.03 63.31 63.40 63.05
HTNE 61.36 62.55 63.47 63.28 63.37
DyREP 62.09 62.33 62.59 62.03 61.87
EvolveGCN 62.02 62.57 62.64 62.55 62.43
ConMNCI 63.92 63.99 64.35 64.07 63.98

AMms DeepWalk 56.60 57.57 57.80 57.11 56.97
node2vec 56.12 56.46 57.72 57.07 57.49
GraphSAGE 56.85 56.87 57.63 57.59 57.03
HTNE 57.36 57.43 57.67 57.28 57.68
DyREP 56.80 57.03 57.55 57.44 57.31
EvolveGCN 58.31 58.02 58.48 57.69 58.17
ConMNCI 58.02 58.11 58.74 58.09 58.07

BITotc DeepWalk 59.02 58.97 59.07 59.00 58.94
node2vec 59.94 60.00 60.01 59.97 59.65
GraphSAGE 60.02 60.17 60.21 60.14 60.17
HTNE 61.12 61.39 61.54 61.08 61.48
DyREP 61.07 61.22 61.23 61.02 61.13
EvolveGCN 59.02 59.02 59.27 59.19 59.17
ConMNCI 62.53 62.87 62.94 62.91 62.76

Embedding temporal networks inductively via mining neighborhood and community influences﻿	

1 3

We, therefore, believe that the embedding dimension size
should be balanced between representation ability and exper-
imental performance. Some researchers [6] have started to
experiment with dynamically generating embeddings with
different dimension sizes for different nodes. However, since
the change in dimension size has a little influence on perfor-
mance in the field of network embedding, this issue has not
received much attention from researchers and d is usually set
to 128. In the future, we will work on this issue.

In summary, the experimental results prove that the
embedding dimension size has little effect on the perfor-
mance of the method, and the best results tend to arise at
d=128. Therefore, we set the embedding dimension size d
to be 128 on ConMNCI and use default values of d in base-
lines. In fact, all baseline method set the default d=128.

4.9.2 � Historical Neighbor Sequence Length

When mining neighborhood influence, we use a hyperpa-
rameter of the historical neighbor sequence length L, which

is designed to truncate a fixed length sequence of node
neighbors by the latest interactions.

Reference to previous research [17, 27, 63], neighbors of
very early interactions have little effect on the current node
interaction. In other words, only the few newly interactive
neighbors may play a major role in most cases, while other
neighbors may interfere with traninig. Therefore, to verify
this intuition, we choose 2, 3, 5, 10, and 20 for the length L,
other parameters are the same as above.

Specifically, we evaluate ConMNCI with different L via
node classification task. Due to the large difference in node
degrees, we select four different datasets, BITotc, BITalpha,
ML1M, and AMms.

As shown in Table 6, when L is 5, ConMNCI achieves
the best performance on both BITotc and BITalpha. How-
ever, ML1M tends to have better performance with more
neighbors (L=10), and AMms tends to have better per-
formance with fewer neighbors (L=2). This may be due
to different node degree in the dataset. According to data
description in Table 2, the average degree of each node
is 2.40 in AMms dataset and is 225.77 in ML1M data-
set, respectively. The average degree of the other datasets
are all in the interval (12,17). It means that most of the
nodes in AMms have few edges, while most of the nodes
in ML1M have a lot of edges. Thus our method requires a
short neighbor sequence length in AMms (L=2) and a long
one in ML1M (L=10). In the link prediction experiments
(Section 4.7), we also discuss the effect of differnt neighbor
sequence length L.

Table 6   Parameter sensitivity experiment of sequence length L 

Accuracy(%)

Datasets L=2 L=3 L=5 L=10 L=20

BITotc 60.82 62.93 63.21 62.57 61.42
BITalpha 73.11 75.63 79.54 78.89 78.03
ML1M 53.62 56.58 60.12 62.23 62.19
AMms 57.77 57.68 57.05 56.82 56.53

Fig. 6   Parameter sensitivity of
community number K 

30

40

50

60

70

80

Yelp BITotc DBLP BITalpha

)
%(ycaruccA

K=2 K=5 K=10
K=20 K=30

	 M. Liu et al.

1 3

In summary, we should select different neighbor sequence
length L for different network data. On the other hand, we find
that when L is 5, the results on each dataset are closer to the
best results. Therefore, we select L=5 by default for all datasets.

4.9.3 � Community Number

When mining community influence, we use a hyperparameter
of the community number K. Here we fix the other parameters
and choose 2, 5, 10, 20, and 30 for K to observe performance
changes. We consider the task of classification and take Accu-
racy as a metric to evaluate the performance of ConMNCI on
four datasets: DBLP, BITotc, BITalpha, and Yelp.

As shown in Fig. 6, on BITotc and BITalpha, ConMNCI
achieves the best performance when K is 5, and on DBLP
and Yelp, ConMNCI achieves the best performance when K
is 10. As shown in Table 2, the numbers of node labels are
5 for BITotc and BITalpha, 7 for Yelp, and 10 for DBLP,
respectively. This is generally consistent with the optimal
community number K on the different datasets.

Note that the performance on all datasets is very similar
to the best performance when K is greater than 10. But when
K is large, ConMNCI will divide the whole network into a
large number of smaller communities, leading to expensive
calculations. Thus we select K=10 for most of the datasets
to balance performance and efficiency.

5 � Conclusions

We propose an inductive continual network representation
learning method ConMNCI that captures both neighborhood
and community influences to generate node embeddings
at any time. Extensive experiments on several real-world
datasets demonstrate that ConMNCI significantly outper-
forms state-of-the-art baselines. In the future, we will further
investigate the influence of node text information on node
embeddings.

Acknowledgements  This work was supported by the National Nat-
ural Science Foundation of China (No. 61972135), the Natu-
ral Science Foundation of Heilongjiang Province in China (No.
LH2020F043), the Innovation Talents Project of Science and Tech-
nology Bureau of Harbin (No. 2017RAQXJ094), and the Foundation
of Graduate Innovative Research of Heilongjiang University in China
(No.YJSCX2021-076HLJU)

References

	 1.	 Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation
by jointly learning to align and translate. In: International confer-
ence on learning representations

	 2.	 Bastings J, Filippova K (2020) The elephant in the interpret-
ability room: Why use attention as explanation when we have
saliency methods?. In: Proceedings of the Third BlackboxNLP
workshop on analyzing and interpreting neural networks for NLP,
pp 149–155

	 3.	 Bochner S (1934) A theorem on fourier-stieltjes integrals. Bulletin
of The American Mathematical Society, pp 271–277

	 4.	 Bruna J, Zaremba W, Szlam A, LeCun Y (2014) Spectral networks
and locally connected networks on graphs. ICLR

	 5.	 Cao S, Lu W, Xu Q (2015) Grarep: Learning graph representations
with global structural information. CIKM

	 6.	 Cavallari S, Zheng WV, Cai H, Chang CCK, Cambria E (2017)
Learning community embedding with community detection and
node embedding on graphs. CIKM, pp 377–386

	 7.	 Cho K, Merrienboer vB, Gulcehre C, Bahdanau D, Bougares F,
Schwenk H, Bengio Y (2014) Learning phrase representations
using rnn encoder-decoder for statistical machine translation.
EMNLP pp 1724–1734

	 8.	 Cui P, Wang X, Pei J, Zhu W (2019) A survey on network embed-
ding. IEEE Transactions on Knowledge and Data Engineering

	 9.	 Ditzler G, Roveri M, Alippi C, Polikar R (2015) Learning in non-
stationary environments: A survey. IEEE Computational Intel-
ligence Magazine pp 12–25

	10.	 Erdos P (1961) Graph theory and probability. Canadian Journal
of Mathematics

	11.	 Fanzhen L, Shan X, Jia W, Chuan Z, Wenbin H, Cecile P, Surya
N, Jian Y, S PY (2020) Deep learning for community detection:
Progress, challenges and opportunities. IJCAI pp 4981–4987

	12.	 Grossberg S (1980) How does a brain build a cognitive code?
Psychological review pp 1–51

	13.	 Grover A, Leskovec J (2016) node2vec: Scalable feature learning
for networks. KDD pp 855–864

	14.	 Hamilton, LW, Ying R, Leskovec J (2017) Inductive representa-
tion learning on large graphs. NIPS pp 1024–1034

	15.	 Hanley AJ, McNeil JB (1982) The meaning and use of the area
under a receiver operating characteristic (roc) curve. Radiology
pp 29–36

	16.	 Hochreiter S, Schmidhuber J (1997) Long short-term memory.
Neural Computation pp 1735–1780

	17.	 Hu L, Li C, Shi C, Yang C, Shao C (2020) Graph neural news
recommendation with long-term and short-term interest modeling.
Information Processing and Management

	18.	 Kim D, Oh A (2020) How to find your friendly neighborhood:
Graph attention design with self-supervision. ICLR

	19.	 Kingma PD, Ba LJ (2015) Adam: A method for stochastic opti-
mization. ICLR

	20.	 Kirkpatrick J, Pascanu R, Rabinowitz CN, Veness J, Desjardins G,
Rusu AA, Milan K, Quan J, Ramalho T, Grabska-Barwinska A,
Hassabis D, Clopath C, Kumaran D, Hadsell R (2017) Overcom-
ing catastrophic forgetting in neural networks. In: Proceedings of
the national academy of sciences of the United States of America

	21.	 Kullback S, Leibler AR (1951) On information and sufficiency.
The Annals of Mathematical Statistics pp 79–86

	22.	 Kumar S, Hooi B, Makhija D, Kumar M, Faloutsos C, Subrah-
manian V (2018) Rev2: Fraudulent user prediction in rating plat-
forms. In: WSDM, ACM, pp 333–341

	23.	 Kumar S, Spezzano F, Subrahmanian V, Faloutsos C (2016) Edge
weight prediction in weighted signed networks. In: ICDM, IEEE,
pp 221–230

	24.	 Kumar S, Zhang X, Leskovec J (2018) Learning dynamic embed-
dings from temporal interactions. arXiv: Machine Learning

	25.	 Li J, Wang Y, McAuley JJ (2020) Time interval aware self-atten-
tion for sequential recommendation. WSDM pp 322–330

	26.	 Liu M, Liu Y (2021) Inductive representation learning in temporal
networks via mining neighborhood and community influences.

Embedding temporal networks inductively via mining neighborhood and community influences﻿	

1 3

In: SIGIR 2021: 44th international ACM SIGIR conference on
research and development in information retrieval

	27.	 Liu M, Quan Z, Liu Y (2020) Network representation learning
algorithm based on neighborhood influence sequence. ACML pp
609–624

	28.	 Maaten vdL, Hinton G (2008) Visualizing data using t-sne. Jour-
nal of Machine Learning Research

	29.	 McClelland LJ, McNaughton LB, O’Reilly CR (1995) Why
there are complementary learning systems in the hippocampus
and neocortex: insights from the successes and failures of con-
nectionist models of learning and memory. Psychological review
pp 419–457

	30.	 McCloskey M, Cohen JN (1989) Catastrophic interference in con-
nectionist networks: The sequential learning problem. Psychology
of Learning and Motivation pp 109–165

	31.	 Mehran SK, Rishab G, Sepehr E, Janahan R, Jaspreet S, Sanjay T,
Stella W, Cathal S, Pascal P, Marcus B (2019) Time2vec: Learn-
ing a vector representation of time. arXiv: Social and Information
Networks

	32.	 Mermillod M, Bugaiska A, Bonin P (2013) The stability-plasticity
dilemma: investigating the continuum from catastrophic forgetting
to age-limited learning effects. FRONTIERS IN PSYCHOLOGY
pp 504–504

	33.	 Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation
of word representations in vector space. CoRR

	34.	 Nguyen HG, Lee BJ, Rossi AR, Ahmed KN, Koh E, Kim S
(2018) Continuous-time dynamic network embeddings. WWW
pp 969–976

	35.	 Ni J, Li J, McAuley J (2019) Justifying recommendations using
distantly-labeled reviews and fined-grained aspects. EMNLP/IJC-
NLP pp 188–197

	36.	 Niepert M, Ahmed MH, Kutzkov K (2016) Learning convolu-
tional neural networks for graphs. In: ICLR, pp 2014–2023

	37.	 Ou M, Cui P, Pei J, Zhu, W (2016) Asymmetric transitivity pre-
serving graph embedding. KDD

	38.	 Pareja A, Domeniconi G, Chen J, Ma T, Suzumura T, Kanezashi
H, Kaler T, Schardl TB, Leiserson CE (2020) EvolveGCN:
Evolving graph convolutional networks for dynamic graphs. In:
Proceedings of the Thirty-Fourth AAAI conference on artificial
intelligence

	39.	 Parisi IG, Kemker R, Part LJ, Kanan C, Wermter S (2019) Con-
tinual lifelong learning with neural networks: A review. Neural
Networks pp 54–71

	40.	 Perozzi B, Al-Rfou’ R, Skiena S (2014) Deepwalk: online learning
of social representations. KDD pp 701–710

	41.	 Qi C, Zhang J, Jia H, Mao Q, Wang L, Song H (2021) Deep face
clustering using residual graph convolutional network. Knowledge
Based Systems 211:106561

	42.	 Grossberg S (2013) Adaptive resonance theory: how a brain learns
to consciously attend, learn, and recognize a changing world. Neu-
ral Networks pp 1–47

	43.	 Sankar A, Wu Y, Gou L, Zhang W, Yang H (2020) Dysat: Deep
neural representation learning on dynamic graphs via self-atten-
tion networks. In: WSDM, pp 519–527

	44.	 Srinivasan B, Ribeiro B (2020) On the equivalence between node
embeddings and structural graph representations. ICLR

	45.	 Sun FY, Qu M, Hoffmann J, Huang CW, Tang J (2019) vgraph: A
generative model for joint community detection and node repre-
sentation learning. NIPS pp 512–522

	46.	 Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q (2015) Line:
Large-scale information network embedding. WWW​

	47.	 Thrun BS, Mitchell MT (1993) Lifelong robot learning. Lifelong
Robot Learning

	48.	 Trivedi R, Farajtabar M, Biswal P, Zha H (2019) Dyrep - learning
representations over dynamic graphs. ICLR

	49.	 Tsai HYH, Bai S, Yamada M, Morency LP, Salakhutdinov R
(2019) Transformer dissection: An unified understanding for
transformer’s attention via the lens of kernel. EMNLP/IJCNLP
1:4343–4352

	50.	 Tu C, Liu H, Liu Z, Sun M (2017) Cane: Context-aware network
embedding for relation modeling. In: ACL, pp 1722–1731

	51.	 Tu C, Zeng X, Wang H, Zhang Z, Liu Z, Sun M, Zhang B, Lin L
(2018) A unified framework for community detection and network
representation learning. IEEE Transactions on Knowledge and
Data Engineering pp 1–1

	52.	 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez
NA, Kaiser L, Polosukhin I (2017) Attention is all you need. NIPS
pp 5998–6008

	53.	 WANG D, Cui P, Zhu W (2016) Structural deep network embed-
ding. KDD

	54.	 Wang Y, Chang YY, Liu Y, Leskovec J, Li P (2021) Inductive rep-
resentation learning in temporal networks via causal anonymous
walks. ICLR

	55.	 Wu J, Wang X, Feng F, He X, Chen L, Lian J, Xie X (2021)
Self-supervised graph learning for recommendation. SIGIR pp
726–735

	56.	 Xu D, Cheng W, Luo D, Liu X, Zhang X (2019) Spatio-temporal
attentive rnn for node classification in temporal attributed graphs.
IJCAI pp 3947–3953

	57.	 Xu D, Liang J, Cheng W, Wei H, Chen H, Zhang X (2021) Trans-
former-style relational reasoning with dynamic memory updating
for temporal network modeling. AAAI pp 4546–4554

	58.	 Xu D, Ruan C, Korpeoglu E, Kumar S, Achan K (2019) Self-
attention with functional time representation learning. NIPS pp
15889–15899

	59.	 Xu D, Ruan C, Korpeoglu E, Kumar S, Achan K (2020) Inductive
representation learning on temporal graphs. ICLR

	60.	 Yang M, Zhou M, Kalander M, Huang Z, King I (2021) Discrete-
time temporal network embedding via implicit hierarchical learn-
ing in hyperbolic space. KDD pp 1975–1985

	61.	 Zhou F, Cao C (2021) Overcoming catastrophic forgetting in
graph neural networks with experience replay. AAAI

	62.	 Zhou H, Zhang S, Peng J, Zhang S, Li J, Xiong H, Zhang W
(2021) Informer: Beyond efficient transformer for long sequence
time-series forecasting. In: The Thirty-Fifth AAAI conference on
artificial intelligence, AAAI 2021, p. online. AAAI Press

	63.	 Zuo Y, Liu G, Lin H, Guo J, Hu X, Wu J (2008) Embedding tem-
poral network via neighborhood formation. KDD pp 2857–2866

Publisher’s note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Meng Liu  received his BEng
degrees in software engineering
from the Henan University of
Economics and Law, China. He
is currently working toward the
master’s degree with the School
of Computer Science and Tech-
nology, Heilongjiang University,
China. His research interests
include graph embedding and
social computing.

	 M. Liu et al.

1 3

Zi‑Wei Quan  received her BEng
degrees in software engineering
from the Heilongjiang Univer-
sity, China. Her main research
interests include data mining and
social network.

Jia‑Ming Wu  received his BEng
degrees in information manage-
ment and information system
from Taiyuan University of Sci-
ence and Technology, China. He
is currently working toward the
master's degree with School of
Computer Science and Technol-
ogy, Heilongjiang University,
China. His research interest
include network representation
learning.

Dr. Yong Liu  received the PhD
degree in computer science from
the Harbin Institute of Technol-
ogy, China. He is currently an
associative professor in the
School of Computer Science and
Technology at Heilongjiang Uni-
versity, China. His research
interests include graph mining
and social network analysis.

Dr. Meng Han  is currently the
Director of Research Center for
Innovation through Data Intelli-
gence, ZJU-BJ 100-Young Pro-
fessor at Binjiang Institute of
Zhejiang University. Dr. Han got
his Ph.D. in Computer Science
and MBA from Georgia State
University and Georgia Institute
of Technology. He is currently
an IEEE Senior member, an
IEEE COMSOC member, and an
ACM member. His research
interests include data-driven
intelligence, data security & pri-
vacy, and financial technology,

etc.

	Embedding temporal networks inductively via mining neighborhood and community influences
	Abstract
	1 Introduction
	2 Related work
	2.1 Static and dynamic network
	2.2 Transductive and inductive learning

	3 Method
	3.1 Problem definition
	3.2 Node Embedding Initialization
	3.3 Neighborhood Influence
	3.4 Community Influence
	3.5 Aggregator Function
	3.6 Continual Learning
	3.7 Model Optimization
	3.8 Complexity Analyses

	4 Experiments
	4.1 Datasets
	4.2 Baselines
	4.3 Tasks and Evaluation Measures
	4.4 Parameter Settings
	4.5 Node Classification
	4.6 Network Visualization
	4.7 Link Prediction
	4.8 Ablation Study
	4.8.1 Positional Encoding
	4.8.2 Neighborhood and Community Influences
	4.8.3 Continual Learning

	4.9 Parameter Sensitivity Study
	4.9.1 Embedding dimension size
	4.9.2 Historical Neighbor Sequence Length
	4.9.3 Community Number

	5 Conclusions
	Acknowledgements
	References

