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Abstract
Network embedding aims to generate an embedding for each node in a network, which facilitates downstream machine 
learning tasks such as node classification and link prediction. Current work mainly focuses on transductive network embed-
ding, i.e. generating fixed node embeddings, which is not suitable for real-world applications. This paper proposes a novel 
continual temporal network embedding method called ConMNCI by mining neighborhood and community influences 
inductively. We propose an aggregator function that integrates neighborhood influence with community influence to gener-
ate node embeddings at any time, and introduce the idea from continual learning to enhance inductive learning. We conduct 
extensive experiments on several real-world datasets and compare ConMNCI with several state-of-the-art baseline methods 
on various tasks, including node classification and network visualization. The experimental results show that ConMNCI 
significantly outperforms the state-of-the-art baselines.
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1 Introduction

Social networks, protein networks, and e-commerce net-
works [54] are broadly existed in the real-world systems. 
Recently, both industrial and academic are becoming 
increasingly interested in mining information on large-scale 
networks [45]. Considering the complex and irregular fea-
tures of network patterns, learning network data is challeng-
ing [18]. As a popular field, network embedding, also known 
as network representation learning (NRL), aims to model 
network by mapping nodes to a low-dimensional space 
[5, 8, 50]. NRL can be used in many real-world domains. 
The node embeddings generated by NRL could be used for 
downstream machine learning tasks such as node classifica-
tion and link prediction [4, 36].

Network Representation Learning has drawn consider-
able attention due to the wide range of application. Current 

research works usually focus on transductive learning, 
which generate fixed node embeddings by directly training 
the whole network in its final state [44, 48]. However, in 
the real world, networks change frequently, with new nodes 
being added and new interactions happening constantly. 
Therefore, many real-world tasks require node embeddings 
to be updated alongside network changes. Thus transductive 
learning will have to retrain the whole network to obtain 
new node embeddings, which is not feasible for real-world 
networks, especially large-scale networks.

Unlike transductive learning, inductive learning [48] no 
longer focuses on the network’s final node embeddings but 
attempts to learn a model that can dynamically generate 
node embeddings over time even for unseen nodes.

Inductive learning usually learn node embeddings in tem-
poral networks. In a temporal network, edges are annotated by 
sequential interactive events between nodes. Many real-world 
networks contain interaction time between nodes, such as the 
bitcoin trading network, the citation network, etc. Combin-
ing this temporal information allows researchers to learn the 
dynamics of individual nodes in the network more compre-
hensively. However, how to capture temporal information and 
mine network changes over time is a challenging problem.

To address the challenge in temporal networks, in this 
paper, we propose a continual inductive network embedding 
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method called ConMNCI by mining neighborhood and com-
munity influences for each node.

First, we give a brief introduction to neighborhood and 
community. As shown in Fig. 1a, the nodes that are directly 
connected to node A constitute its neighborhood, while the 
two nodes with the lightest color that are not directly con-
nected to node A are not in its neighborhood. As shown in 
Fig. 1b, the nodes with similar behavior patterns or prefer-
ences constitute a community. In this figure, we label four 
different communities with four colors.

For mining neighborhood influence, it is obvious that the 
historical neighbors of a node will influence its future inter-
actions. This influence is not only related to neighbor’s own 
characteristics but also related to their interaction time, thus 
we should combine them to reflect the influence. We calculate 
the affinity between node and neighbors through their embed-
dings, and also encode the interaction time into embeddings.

For mining community influence, we introduce the 
concepts of community detection [11, 51] and community 
embedding [6] by defining several communities and learn-
ing an embedding for each community. Given a node, it 
may have different closeness to different communities. The 
deeper closeness a node is to a community, the more influ-
ence this community has on the node. For example, users on 
Twitter are influenced differently by different topics depend-
ing on their interests, and consumers also have different pref-
erences for different products.

After mining neighborhood and community influences, 
we devise a new aggregator function to obtain node embed-
dings by modifying the Gated Recurrent Unit (GRU) 
framework [7, 16]. In this way, we can obtain effective node 
embeddings at any time.

Finally, we introduce the idea from continual learning 
[47] used to alleviate catastrophic forgetting problem to 
enhance inductive learning. Specifically, after the optimi-
zation of each training batch, we select experience embed-
dings from this batch and store them into the experience 
buffer. During subsequent training, we sample the experi-
ence embeddings from the buffer as a new constraint, thus 

ensuring that ConMNCI consolidaes the existing knowledge 
learned from historical data.

We evaluate ConMNCI on mutiple real-world datasets 
with various tasks, including node classification, link pre-
diction, and visualization, etc. The results demonstrate that 
ConMNCI can achieve better performance than state-of-
the-art baseline methods, which illustrates the capacity of 
ConMNCI in capturing network changes.

Compared with our conference version [26] that has been 
accepted as a short paper in SIGIR 2021, this paper has been 
extended as follows. (1) We are the first to introduce the 
idea from continual learning to enhance inductive learning, 
and use the self-attention mechanism and Kullback-Leibler 
divergence for experience retaining. (2) In Community Influ-
ence part, we discuss both overlapping and non-overlapping 
community patterns in a complementary way. (3) In Neigh-
borhood Influence part, we analyze the effect of length of 
historical neighbor sequence on embedding performance 
by previous work and experiments. (4) We conduct more 
experiments than the conference version, including link pre-
diction, parameter sensitivity, and ablation study.

Our main contributions can be summarized as follows. 

(1) We propose ConMNCI to inductively generate effective 
node embeddings at any time in temporal networks by 
utilizing the positional encoding technology to initial-
ize node embedding, which can speed up the conver-
gence speed of training process.

(2) We incorporate community detection and community 
embedding to mine community influence in temporal 
networks with the consideration of both overlapping 
and non-overlapping community patterns.

(3) We propose a novel GRU-based aggregation function 
to aggregate neighborhood and community influences. 
We also introduce the idea from continual learning to 
further improve the effect of inductive learning.

(4) We conduct extensive experiments on several real-
world datasets to demonstrate the effectiveness of our 
proposed method ConMNCI. The results show that 

Fig. 1  Neighborhood and com-
munity

A



Embedding temporal networks inductively via mining neighborhood and community influences  

1 3

ConMNCI significantly outperforms the state-of-the-
art baselines.

The rest of this paper is organized as follows. In Section 2, 
we summarize recent research related to our work. In Sec-
tion 3, we describe our proposed method in detail. In Sec-
tion 4, we provide the experimental results and analysis. In 
Section 5, we conclude this work and discuss future work.

The source code and data can be downloaded from https:// 
github. com/ MGitH ubL/ MNCI.

2  Related work

Served as an important role in downstream machine learn-
ing tasks, more and more work was carried out in network 
representation learning (NRL) field. In the meantime, NRL 
is developing in several directions. Based on the network 
type, we can divide NRL into static network learning and 
dynamic network learning. Based on the training goal, we 
can also divide NRL into transductive learning and induc-
tive learning.

2.1  Static and dynamic network

Static network means that the network is fixed where 
neither topological structure nor node attribute changes 
over time. In early stage, researchers usually focus on the 
topological structure of the network. They first obtain the 
adjacency matrix of the network, then use random walk 
or matrix decomposition [37] to learn node embeddings. 
To name a few, DeepWalk first applies random walks to 
generate sequences of nodes over the network and then 
employs the Skip-Gram [33] model to learn node embed-
dings [40]. LINE focus on the first-order and second-order 
proximity among nodes in the network [46]. node2vec 
uses the random walk procedure to balance the breadth-
first and depth-first search strategy [13]. SDNE effectively 
captures highly non-linear network structure to generate 
node embeddings [53]. GraphSAGE learns a function to 
generate node embeddings by sampling and aggregating 
features from nodes’ local neighborhood [14]. RGCN 
applies the idea of ResNet into GCNs and construct RGCN 
to learn the possibility of linkage between two nodes [41]. 
SGL supplements the classical supervised task of recom-
mendation with an auxiliary self-supervised task, which 
reinforces node representation learning via self-discrim-
ination [55].

Unlike static network, dynamic network means that a 
network contains dynamic changes that can help research-
ers learn the evolution of the network structure and obtain 
more effective embeddings. In the early stages of dynamic 
network, researchers usually divide the network into several 

states based on the timestamps. The network state at each 
timestamp is called a static snapshot of the dynamic net-
work. By comparing the differences between multiple static 
snapshots, researchers can learn the evolutionary patterns 
of the network over time. To name a few, DySAT computes 
node embeddings through joint self-attention along two 
dimensions of structural neighborhood and temporal dynam-
ics [43]. EvolveGCN [38] uses a RNN to estimate the GCN 
parameters for the future snapshots.

Since there are many interactions in the interval between 
two static snapshots, it is difficult to accurately represent net-
work changes, researchers began focusing on learning node 
embeddings in temporal network with chronological inter-
active events. To name a few, CTDNE applies a biased or 
unbiased random walk procedure to combine temporal infor-
mation into node embeddings [34]. HTNE uses the Hawkes 
process to capture the influence of historical neighbors on 
the current node [63]. JODIE applies RNNs to estimate the 
future embedding of nodes and introduces a novel projec-
tion operator which learns to estimate node embeddings at 
any time in the future [24]. TRRN employs transformer-
style self-attention to reason over a set of memories and 
considers both updated memories and different factors that 
influence node behaviors [57]. HTGN follows the concise 
and effective GRNN framework and leverages the power of 
hyperbolic graph neural network and facilitates hierarchical 
arrangement to capture the topological dependency [60].

2.2  Transductive and inductive learning

Transductive learning generates fixed node embeddings by 
directly optimizing the final state of the network. Most of 
the existing approaches for generating node embeddings are 
inherently transductive. However, the disadvantage of trans-
ductive learning is that when the network changes, these 
approaches need to retrain the whole network to generate 
new node embeddings, which involves expensive calcula-
tions. Thus, transductive learning is not suitable for generat-
ing new node embeddings in dynamic networks.

Different from transductive learning, inductive learning 
no longer generates fixed node embeddings but focuses on 
learning a model that can generate node embeddings at any 
time. When a new node is added, the model can directly 
calculate the new node embedding using the node’s features 
and other information. To name a few, GraphSAGE learns 
a function to generate node embeddings by sampling and 
aggregating features from nodes’ local neighborhood [14]. 
DyREP uses RNNs to learn node embeddings while its loss 
function is built upon temporal point process [48]. TGAT 
leverages GAT to extract node representations where the 
nodes’ neighbors are sampled from the history and encodes 
temporal information [59]. ER-GNN stores knowledge 
from previous tasks as experiences and replays them when 

https://github.com/MGitHubL/MNCI
https://github.com/MGitHubL/MNCI
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learning new tasks to mitigate the catastrophic forgetting 
issue [61].

According to the above classification, our method ConM-
NCI belongs to inductive learning in temporal networks. In 
real-world network datasets, temporal networks can rep-
resent network changes accurately, and inductive learning 
can capture these changes flexibly. Therefore, our method 
ConMNCI is more suitable for generating effective node 
embeddings, and we will introduce it in detail below.

3  Method

3.1  Problem definition

First, we introduce the basic framework of ConMNCI in 
Fig. 2. We use one interaction between two nodes as an 
example to explain the process of generating node embed-
dings inductively. Assume that node A interacts with node C 
at the current moment. In order to update the node embed-
ding of A, we feed A’s embedding before interaction, the 
neighborhood influence embedding and the community 
influence embedding into the GRU to generate A’s node 
embedding after interaction. In GRU, NG, CG, and UG 
are called neighborhood reset gate, community reset gate, 
and update gate, which control the update of neighborhood 
influence, community influence, and node embedding, 
respectively.

Then, according to the time information of node interac-
tion, we can formally define the temporal network.

Definition 1 (Temporal Network) When two nodes inter-
act, it will always be accompanied by a clear timestamp. A 
temporal network can be defined as a graph G = (V , E, T) , 
where V and E denote the set of nodes and edges, and T 
denotes the set of interactions. Given an edge e(u, v) between 
node u and v, there is at least one interaction matching 
e(u, v), i.e., T(u, v) = {(u, v, t1), (u, v, t2),⋯ , (u, v, tn)}.

In a temporal network, the data is stored in the tuple of 
(u, v, t), where there is one interaction between node n and v 
at t. The meaning of interaction varies in different networks. 
For example, an interaction in a citation network is a litera-
ture citation, an interaction in an email network is an email 
correspondence, and an interaction in a commerce network 
is a commodity purchase.

In particular, we define each interaction can be considered 
as an edge constructed in two nodes, i.e., one interaction 
is one edge. In this case, two nodes may interact multiple 
times, and these interactions can be ordered by timestamp. 
When two nodes interact, we call them neighbors. The 
historical neighbor sequence of a node can be defined as 
follows.

Definition 2 (Historical Neighbor Sequence) For each 
node u, there is a historical neighbor sequence Hu , which 
stores the historical interactions of u up to the current 

F

Neighborhood 
Influence Embedding 

Community 
Influence Embedding 

Previous 
Node Embedding 

Fig. 2  ConMNCI Framework
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moment, i.e., Hu = {(v1, t1), (v2, t2),⋯ , (vn, tn)} . Each tuple 
in the sequence represents an event, i.e., node vi interacts 
with u at time ti.

During the interaction of nodes, their neighbors tend to 
influence their behavior, which we call neighborhood influ-
ence. In addition, nodes in a network may also be influenced 
by the communities. Graph theory proposes two rules to 
define the relationship between nodes and communities [10, 
11]. According these rules, we can define the community 
as follows.

Definition 3 (Community) Communities are the sub-
graphs in a network where (1) nodes in a community are 
densely connected, and (2) nodes in different communities 
are sparsely connected. Here, we define K communities 
C = {c1,⋯ , cK} divided from a network G, where ck is the 
kth community ( k ∈ {1,⋯ ,K} ). Each node may may belongs 
to one or more communities.

Our goal is to capture neighborhood and community 
influences to generate effective node embeddings for down-
stream tasks. The notations and descriptions appearing in 
this paper are shown in Table 1.

3.2  Node Embedding Initialization

For network representation learning (NRL) methods, node 
embeddings need to be initialized before training. Unlike the 
random initialization used by common methods, we propose 
a time positional encoding technology to generate node 
embeddings by using time information, which can speed 

up the convergence speed of training process. Note that 
the positional encoding part is only used to generate initial 
node embeddings and does not participate in the subsequent 
update process.

To the best of our knowledge, the idea of positional 
encoding [52] is first proposed in Natural Language Pro-
cessing (NLP) field. Considering that in many real-world 
scenarios, most nodes have no clear feature information for 
researchers to obtain prior knowledge. In this case, the initial 
time when node u joins a network will be very useful for u, 
which should be further exploited.

According to the initial time order, we can obtain an 
ordered node sequence Snode = {u1, u2,⋯ , un} . Then, we use 
sine and cosine functions with different frequencies to define 
the encoding on each dimension in the node embeddings.

Where u is the uth node position number in Snode , d is the 
dimension size of node embedding, 2i is the (2i)th dimension 
in node embedding, and PE(u,2i) is the encoding for the (2i)th 
dimension of the uth node embedding in Snode . Here each 
dimension corresponds to a sinusoid, and the wavelengths 
form a geometric progression from 2� to 10000 ⋅ 2� [52]. 
We select sine and cosine functions for coding because they 
have the following properties.

Let PEu+k and PEu be the embeddings for the (u + k)th node 
and the uth node in Snode , respectively. According to this 
property, for any fixed offset k, PEu+k can be formalized 
into a linear function of PEu , which means that the function 
in (1) can capture the relative time positions of nodes. In this 
way, we can obtain the initial node embedding zt0u  of node u 
at the initial time t0 as follows.

Where ⊕ denotes concatenation operator, and PE(u,i) rep-
resents a position value. After concatenating each position 
value to obtain the initial node embedding, we can mine 
neighborhood and community influences. Note that both 
influences of a node are calculated every time it interacts 
with other nodes, thus we omit the time superscript by 
default in the following unless we want to distinguish two 
variables with different timestamps.

3.3  Neighborhood Influence

We believe that after an interaction occurs between node 
u and v, node v will influence the future interactions 

(1)
PE(u,2i) = sin(u∕100002i∕d)

PE(u,2i+1) = cos(u∕100002i∕d)

(2)
sin(u + k) = sin u cos k + cos u sin k

cos(u + k) = cos u cos k − sin u sin k

(3)z
t0
u = PEu = [PE(u,0) ⊕ PE(u,1) ⊕⋯⊕ PE(u,d−1)]

Table 1  Notation

Notation Description

z
tn
u

embedding of node u at time tn
Hu historical neighbor sequence of u
z
ti

(u,i)
temporal embedding of edge e = (u, i, ti)

a(u,i) affinity weight between two nodes
a(u,ck)

affinity weight between node and community
zck embedding of the kth community ck
NE

tn
u

neighborhood influence embedding of u at tn
CO

tn
u

community influence embedding of u at tn
�NE
u

, �CO
u learnable parameter of NEtn

u  and COtn
u

E,R,� experience embeddings, number, and buffer
B batch of training data
� dynamic weight in loss function L(u, E)
L(u, v) loss function of neighbor nodes
L(c) loss function of community detection
L(E) loss function of continual learning
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of node u with other nodes, and u will also influence 
v. Given a node u, we assume that the influence on u 
is not only related to neighbor’s own characteristics, 
but also related to their interaction time. Therefore, to 
mine the neighborhood influence on each node, we will 
analyze its neighbors’ embedding and interaction time, 
respectively.

Note that in real-world networks, the length of neighbor 
sequence may vary significantly over all nodes. To keep 
the computational pattern of each batch fixed and more 
efficient, we fix the sequence length l and select the latest 
L neighbors for each node instead of using full neighbors. 
Referencing to previous works [17, 27, 63] and our experi-
ments, the experience value of sequence length L is 5, 
we will study the sensitivity of the hyperparameter L in 
experiments.

Affinity weight We assume that there is an affinity 
between any two nodes, which reflects the closeness 
of their relationship. Given a node u and its neighbor 
sequence Hu , we can calculate u’s affinity to different 
neighbors. After normalizing these affinities, the affinity 
weight a(u,i) for neighbor i on node u can be calculated as 
follows.

Where � is the sigmoid function, Hu is node u’s historical 
neighbor sequence. We use negative squared Euclidean dis-
tance to measure the affinity between two embeddings.

Temporal Embedding In temporal networks, network struc-
ture and node behavior will evolve over time. Thus, learning 
temporal information is an important way to capture the 
evolutionary process of neighborhood influence. In this 
stage, we learn a temporal embedding for two nodes based 
on their interactive timestamp. Given an interaction (u, i, ti) , 
the temporal embedding zti

(u,i)
 between two nodes at time ti 

can be calculated as follows.

Where tc is the current time, F(t) is the encoding function. 
For F(t), we adopt random Fourier features to encode time 
[3, 31] which may approach any positive definite kernels 
according to the Bochner’s theorem [54, 58, 59].

Where � = {�1,⋯ ,�d∕2} is a set of learnable parameters to 
ensure that the dimension size of temporal embeddings and 
node embedding are the same as d.

(4)a(u,i) =
�(−��zu − zi

��
2
)

∑
i�∈Hu

�(−��zu − zi�
��
2
)

(5)z
ti
(u,i)

= F(tc − ti)

(6)F(t) = [cos(�1t), sin(�1t),⋯ , cos(�d∕2t), sin(�d∕2t)]

Neighborhood influence embedding Combining affinity 
weight and temporal embedding, the neighborhood influ-
ence embedding NEtn

u  of u at time tn can be calculated.

Where �NE
u

 is a learnable parameter that regulates u’s neigh-
borhood influence embedding, ztn−1

i
 is the embedding of u’s 

neighbor i at time tn−1 , ⊙ denotes element-wise multiplica-
tion. To calculate the influence embedding of the current 
timestamp, we need to use the node embedding of the previ-
ous timestamp, which will be introduced later.

3.4  Community Influence

Here we introduce the concepts of community detection 
and community embedding to mine community influence. 
Community detection, or more specifically, clustering nodes 
based on similar behavior or structure, helps us understand 
the inherent influences and patterns of networks [11]. In 
real-world networks, nodes in the same community tend to 
have similar behavior patterns.

Community detection in temporal networks is more 
challenging than traditional community detection, because 
community assignments and embeddings will change as the 
network evolves. In this paper, we define K communities 
C = {c1, ..., cK} and learn an embedding zck for each commu-
nity ck ( k ∈ {1,⋯ ,K} ), where K is a hyperparameter. Given 
a node u, it may have different affinities to these communi-
ties. The deeper affinity u is to a community ck , the more 
likely u is to belong to ck , and the more influence ck has on u.

For node u, we calculate its affinity with all communi-
ties. Then we normalize these affinities to obtain the affinity 
weights of different communities on u. In this case, a com-
munity ck ’s affinity weight �(u,ck)

 on u can be calculated. 
Here we also use negative squared Euclidean distance to 
measure the affinity between two embeddings.

Unlike general community detection methods that simply 
assign nodes to communities, our insight for assigning 
nodes is to have the capability to represent the membership 
strength of nodes to communities over time. By calculating 
the affinity weight between each community and node, we 
are able to obtain the community assignment at any time.

It is worth noting that we have considered two community 
patterns, i.e., non-overlapping communities and overlapping 
communities.

(7)NEtn
u
= 𝛿NE

u

∑

i∈Hu

a(u,i)z
ti
(u,i)

⊙ z
tn−1
i

(8)a(u,ck) =
�(−

���zu − zck
����

2)

∑
ck� ∈C

�(−
���zu − zck�

���
2

)
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Non‑overlapping communities  It means that a node will 
only belong to the community with the greatest affinity. 
In this case, if a community ck has the the highest affinity 
weight to node u at time tn , after updating u’s embedding 
from ztn−1u  to ztnu  , we will dynamically update ck ’s embedding, 
i.e., we consider that u belongs to ck at time tn.

Based on the non-overlapping pattern, we calculate a distri-
bution p(ck|u) for each node u [45], where p(ck|u) = a(u,ck) . 
Since a node will only belong to one community, the optimi-
zation objective for the community part is to maximize the 
affinity of node u with community ck it belongs to.

Overlapping communities It means that a node will belong 
to more than one community, and the node has different 
affinities to different communities. In this case, each com-
munity embedding will be updated with a different affinity 
weight in combination with node u’s embedding zu.

Based on the overlapping pattern, in addition to calculating 
the distribution p(ck|u) for each node u, we also calculate a 
distribution p(v|ck) for each community ck [45].

Since a node belongs to more than one community, it 
means that a node will interact with different nodes based 
on different community contexts. Thus, the process of nodes 
interacting and becoming neighbors can be formulated in a 
probabilistic way to optimize the generation of community 
embeddings.

Here we choose the pattern of non-overlapping communi-
ties by default, which depends on the datasets used for the 
experiment.

Community influence embedding Finally, the commu-
nity influence embedding COtn

u  of node u at time tn can be 
calculated, where �CO

u
 is a learnable parameter that regu-

lates u’s community influence embedding.

(9)zck ∶= zck − ztn−1
u

+ ztn
u

(10)L(c) =
∑

u∈V

max
ck∈C

(log p(ck|u)) =
∑

u∈V

max
ck∈C

(log a(u,ck))

(11)for each ck ∈ C, zck ∶= zck − a(u,ck) × (ztn−1
u

− ztn
u
)

(12)p(v�ck) =
�(−

���zv − zck
���
2

)

∑
v�∈V �(−

���zv� − zck
���
2

)

(13)L(u, c) =
∑

u∈V

∑

ck∈C

∑

v∈Hu

log p(v|ck)p(ck|u)

(14)COtn
u
= �CO

u

∑

ck∈C

a(u,ck)zck

It is worth noting that the community influence embedding 
represents the community influence of a single node, while 
the community embedding represents a single community, 
they are not the same.

3.5  Aggregator Function

The GRU network can capture the temporal patterns of 
sequential data by controlling the aggregation degree of 
different information and determining the proportion of 
historical information to be reversed [7, 56]. In this paper, 
we extend GRU to devise an aggregator function, which 
combines neighborhood and community influences with 
the node embeddings at the previous timestamp to gener-
ate the node embeddings at the current timestamp. The 
aggregator function is defined as follows.

Here � is the sigmoid function, ⊕ denotes concatenation 
operator, ⊙ denotes element-wise multiplication. NEtn

u  , COtn
u  

and ztnu  are neighborhood influence embedding, commu-
nity influence embedding and node u’s embedding at time 
tn , respectively. WUG,WNG,WCG,Wz ∈ ℝ

d×3d , bUG, bNG , 
bCG, bz ∈ ℝ

d are learnable parameters, UGtn
u ,NG

tn
u ,CG

tn
u ∈ ℝ

d 
are called update gate, neighborhood reset gate, and com-
munity reset gate, respectively.

Here we divide the reset gate in GRU into two reset 
gates, i.e., neighborhood reset gate NGtn

u  and community 
reset gate CGtn

u  . We use NGtn
u  and CGtn

u  to control the reser-
vation degree of neighborhood and community influence 
embeddings, respectively. Then, we aggregate the node 
embedding at the previous timestamp with reserved neigh-
borhood and community influence embeddings to obtain 
a new hidden state z̃tnu  at the current timestamp. Finally, 
we use UGtn

u  to control the reservation degree of histori-
cal information. Based on the node embedding ztn−1u  at the 
pervious timestamp and the new hidden state z̃tnu  at the 
current timestamp, we can obtain a node embedding ztnu  at 
the current timestamp. In this way, we can calculate node 
embeddings inductively.

Note that during the training process, we process one 
batch of data at a time and update all node embeddings 
in this batch. This has the same effect as updating the 

(15)UGtn
u
= 𝜎(WUG[z

tn−1
u

⊕ NEtn
u
⊕ COtn

u
] + bUG)

(16)NGtn
u
= 𝜎(WNG[z

tn−1
u

⊕ NEtn
u
⊕ COtn

u
] + bNG)

(17)CGtn
u
= 𝜎(WCG[z

tn−1
u

⊕ NEtn
u
⊕ COtn

u
] + bCG)

(18)
z̃tn
u
= tanh(Wz[z

tn−1
u

⊕ (NGtn
u
⊙ NEtn

u
)⊕ (CGtn

u
⊙ COtn

u
)] + bz)

(19)ztn
u
= (1 − UGtn

u
)⊙ ztn−1

u
+ UGtn

u
⊙ z̃tn

u
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embedding for one node at a time, unless a node inter-
acts multiple times in the same batch. This is because that 
when there are multiple interactions about the same node 
in a batch, only last interaction will be used to update 
the embedding of this node, and other interactions will be 
discarded. But when the batch size is small (batch size ≤ 
128), this problem will rarely occur and can be ignored.

On the other hand, when one batch of data is fed into 
GRU, how to calculate the current embedding based on the 
previous embedding? Suppose that the interaction sequence 
of node u is {(u, v1, t1), (u, v2, t2), (u, v3, t3), ..., (u, vn, tn)} . 
When we process the interaction (u, v3, t3) , the current times-
tamp for u is t3 , while the previous timestamp for u is t2 . 
In the real training process, we only need to save all node 
embeddings of the previous timestamp. More specially, we 
create a global tensor to save all node embeddings and write 
a node embedding back to the tensor only when this node 
embedding is updated in training. At any time, node embed-
dings in this tensor can be considered as the embeddings at 
the previous timestamp.

3.6  Continual Learning

Continual learning can learn over time continually by captur-
ing and transforming new information while retaining previ-
ous knowledge or experiences [9, 39, 47]. The main challenge 
of continual learning is to be catastrophic forgetting in the 
learninig process [12, 42], i.e., a model will forget old experi-
ences in the process of learning new information [29, 30, 39]. 
In the worst scenario, the old knowledge learned by the model 
will be completely overwritten by the new knowledge.

To alleviate the catastrophic forgetting problem, research-
ers focus on learning multiple tasks sequentially [20, 32]. In 
particular, they store knowledge from previous tasks as experi-
ences and replays them when learning new tasks [61]. Inductive 
learning (IL) has many similarities to continual learning (CL). 

(1) CL divides a task into multiple subtasks with the same 
objective, and each subtask corresponds to a sub-data-
set. IL also keeps the same objective during training, 
and learns the model from the dataset in batches.

(2) CL generalizes the experience from the previous tasks 
for the subsequent tasks. IL also summarizes node 
interaction patterns from previous batches of training, 
and continually adjusts parameters for subsequent train-
ing.

(3) CL faces the catastrophic forgetting problem in learn-
ing, where old knowledge is overwritten by new knowl-
edge. IL also faces this problem, where parameters are 
biased towards new batches of data during training.

(4) The core problem with CL is that tasks change before 
and after. IL built on the temporal network had to face 

similar changes, i.e., the evolution of the network over 
time.

Due to the similarity, we introduce the idea from continual 
learning [47] used to alleviate catastrophic forgetting problem 
to enhance inductive learning, thus constraining the stable 
update of parameters and node embeddings during training.

Specifically, we construct the experience buffer � to 
hold experience node embeddings for each batch. Note 
that although conventional CL methods usually select real 
nodes, in a temporal network, the selected experience nodes 
may undergo new interactions in subsequent training batch, 
i.e., their embeddings will update over time. Therefore, we 
directly select experience node embeddings.

Here we introduce the self-attention mechanism [1, 2] 
to select top-R experience embeddings for each batch. An 
attention function can be considered as the scaled dot-prod-
uct calculation consisting of queries, keys, and values [52, 
62].

Where Q,K,V ∈ ℝ
|B|×d denotes the “queries”, “keys”, and 

“values”, respectively. Here d is the size of embedding 
dimension, and |B| is the size of a batch B. The node embed-
dings in a batch B is denoted as Z ∈ ℝ

|B|×d , thus we can use 
three parameter matrices WQ,WK,WV ∈ ℝ

d×d to generate 
Q,K,V respectively. Specially, Q = ZWQ , K = ZWK , and 
V = ZWV.

Our goal is to find the top-R most representative embed-
dings from Z as experience embedding set E . Let qi , ki , vi 
be the ith row in Q , K , V respectively. Inspired by [49, 62], 
we can define the attention function as a probability-based 
kernel function.

Where the kernel function k(qi, kj) denotes the asymmetric 
exponential kernel exp(qik

T
j
∕
√
d) , and the probability p(kj|qi) 

is equal to k(qi, kj)∕
∑

l k(qi, kl) . In this way, the attention 
function encourages the query’s attention probability dis-
tribution corresponding to dominant dot-product pairs away 
from the uniform distribution. Let q(kj|qi) = 1∕|B| denotes the 
uniform distribution, we can calculate the difference between 
p(kj|qi) and q(kj|qi) to distinguish the representative embed-
dings. Specially, we use the Kullback-Leibler divergence [21, 
62] to measure the representativeness as follows.

(20)Att(Q,K,V) = softmax

�
QKT

√
d

�
V

(21)Att(qi,K,V) =
�

j

k(qi, kj)∑
l k(qi, kl)

vj = �p(kj�qi)[vj]

(22)KL(q��p) = ln

�B��

j=1

e

qik
T
j√
d −

1

�B�

�B��

j=1

qik
T
j

√
d

− ln �B�
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When we calculate and compare the Kullback-Leibler diver-
gence for each query, the constant ln |B| can be omitted. Thus 
the ith query’s representativeness measurement (RM value) 
can be defined as follows.

The larger the RM value is, the more representative the 
query is. Note that we need to calculate all dot-product pairs 
to obtain the RM value for each query, which means large 
and complex calculations. To simplify this process, we use 
an empirical approximation for the calculation. According to 
[62], for each query qi ∈ ℝ

d , we have the bound as follows.

In this way, we only need to calculate the max value 
of (qik

T
j
∕
√
d) to obtain the representativeness of each 

query. Then we select the most representative top-R node 
embeddings as experience embedding set E and put them 
into the experience buffer � , i.e., � = � ∪ E . Embeddings 
in the experience buffer will be used in the optimization 
process, thus forcing the average node embeddings gen-
erated in subsequent batches to be as similar as possible 
to the experience embeddings. Specially, we randomly 
choose R embeddings from the buffer � into the optimi-
zation process, and the selected embeddings may come 
from different batches.

By adding a new constraint in the original loss function, 
we attempt to consolidate the old experience as we learns 
new experience. Assuming that the original loss function is 
L, the new loss function can be formulated as follows.

Here |B| is the size of a batch B, R is the number of the selected 
experience embeddings, � is the dynamic weight which will 
change with the changes of |B| and R. Since we calculate the 
final loss for each node while L(E) is for each batch, we want 
to scale it by a certain percentage (i.e., � ) to each node loss.

To the best of our knowledge, we are the first to compare con-
tinual learning with inductive representation learning. This work 
may provide an initial attempt to exploit continual learning for 
inductive representation learning and open up new research 

(23)RM(qi,K) = ln

�B��

j=1

e

qik
T
j√
d −

1

�B�

�B��

j=1

qik
T
j

√
d

(24)

ln �B� ⩽ RM(qi,K) ⩽ maxj{
qik

T
j

√
d
} −

1

�B�

�B��

j=1

qik
T
j

√
d

+ ln �B�

(25)L ∶= L + �L(E)

(26)L(E) = log �(−
‖‖‖‖‖

1

|B|
∑

u∈B

ztn
u
−

1

R

∑

i∈E

�i

‖‖‖‖‖

2

)

(27)� = R∕(|B| + R)

possibilities. Moreover, we also verify the effectiveness of con-
tinual learning for network embedding in the experiments.

3.7  Model Optimization

To learn node embeddings in a fully unsupervised setting, 
we apply a network-based loss function, and optimize it 
with the Adam method [19].

This loss function can be divided into three parts, i.e., loss 
function L(u, v) based on neighbor nodes, loss function L(c) 
based on community detection, loss function L(E) based on 
continual learning as shown in Eq. (26).

For the loss function L(u, v) based on neighbor nodes, 
we define the interaction between node u and v as a posi-
tive sample, while all other nodes not in the neighborhood 
of u are negative samples. Thus the optimization objective 
is to encourage nearby nodes (positive sample) to have 
similar embeddings while enforcing that the embeddings 
of disparate nodes (negative sample) are highly distinct.

However, this will result in a huge amount of computa-
tion. Thus we introduce negative sampling, in which only 
a portion of negative samples are randomly selected for 
computation. In this way, we construct the loss function 
L(u, v) and use negative squared Euclidean distance to 
measure the similarity between two embeddings.

Here Pn(v) is a negative sampling distribution, Q is the num-
ber of negative samples.

For the loss function L(c) based on community detec-
tion, we encourage each node to have high affinity with the 
community it belongs to. According to the two patterns of 
non-overlapping communities and overlapping communi-
ties, we select (10) or (13) as L(c), respectively.

When we choose the overlapping pattern, the loss function 
L(u, c) will face the enormous computation cost. Because 
in (12), the affinity of each node v′ in the network with 
community ck needs to be calculated. Thus, we also use 
negative sampling and the sampled nodes only need to fol-
low (29). This is because we only need to ensure that the 
negative nodes have not interacted with node u.

(28)L =
∑

u∈V

∑

v∈Hu

L(u, v) + L(c) + �L(E)

(29)

L(u, v) = log �
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−
‖‖‖z

tn
u
− ztn

v

‖‖‖
2
)
− Q ⋅ Evn∼Pn(v)

log �

(
−
‖‖‖z
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− ztn
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2
)

(30)L(c) =
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3.8  Complexity Analyses

In this part, we analyze the complexity of ConMNCI. The 
procedure for ConMNCI is shown in Algo. 1.

Suppose that the number of nodes and edges in the graph 
are |V| and |E|, respectively. Let t be the number of epochs, 
s be the number of batches ( s = |E|∕|B| ), |B| be the size of 
each batch, d be the embedding size, L be the length of the 
historical neighbor sequence, K be the number of commu-
nities, R be the number of experience embeddings in each 
batch, and Q be the number of negative sample nodes.

According to Algo. 1, we can divide ConMNCI into five 
parts: Initialization, Batch Training, Updating Community 
Embedding, Loss Function Optimization, and Selecting 
Experience Embeddings. We first calculate the time com-
plexity of each part and then accumulate them. 

1. Initialization (lines 1-3). In this part, we initialize node 
embedding, community embedding and experience 
buffer. For node embedding, according to (1)-(3), there 
are |V| nodes in the network and we generate a d-dimen-
sional embedding for each node, thus the time complex-
ity is O(d|V|). For community embedding, we randomly 
generate K community embeddings, which time com-
plexity is O(Kd). For experience buffer, its complexity 
is a constant. Therefore, the time complexity of this part 
is O(d|V| + Kd).

2. Batch Training (lines 6-10). In this part, we discuss the 
complexity of calculating NEtn

u  , COtn
u  , and ztnu  separately. 

According to (4)-(7), calculating NEtn
u  can be done in 

time complexity of O(L(Ld + d)) = O(L2d) . According 
to (8) and (14), if we select the non-overlapping pat-
tern, calculating COtn

u  can be done in time complexity 
of O(K2d) . According to (15)-(19), calculating ztnu  can 
be done in time complexity of O(3d2 + d2) = O(d2) . 
Thus, the time complexity of traing one batch data is 
O(|B|(L2d + K2d + d2)).

3. Updating Community Embedding (line 11). In this part, 
we first assign nodes to communities based on their 
affinities, and then update the community embeddings 
based on node embeddings. According to (9) and (10), if 
we select the non-overlapping pattern, the time complex-
ity of this part is O(|B|(K + d)).

4. Loss Function Optimization (line 12). In this part, 
according to (28), we need to discuss the complexity 
of three loss functions L(u, v), L(c), and L(E) sepa-
rately. According to (29), the complexity of calcu-
lating L(u, v) is O(|B|LQd), where L is the neighbor 
sequence length and Q is the number of negative sam-
ples. According to (30), the complexity of calculating 
L(c) is O(|B|K2d) . According to (26), the complexity 
of calculating L(E) is O(|B|d + Rd) , where R is the 
number of experience embeddings in each batch. After 
calculating the above three loss functions, ConMNCI 
needs to perform backpropagation to optimize the 
model parameters. The parameters to be optimized are 
{�NE

u
, �CO

u
} , {WUG,WNG,WCG,Wz} , {bUG, bNG, bCG, bz} , 

and {Q,K,V} , and the time complexity of optimizing 
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BIT otc/alpha  [22, 23] are two datasets taken from two 
bitcoin trading platforms OTC and Alpha, 
respectively. A member will rate other 
members in a scale of -10 (total distrust) 
to +10 (total trust) in steps of 1 after the 
transaction. We assume every three score 
steps into one category, thus there are 
seven categories, e.g., users with scores 
-10, -9 and -8 are in the same category.

ML1M  [25] is a widely used movie dataset (ver-
sion MovieLens-1M). For each movie, we 
choose the score that people rated most 
as its label. Since the score is an integer 
between 1 and 5, we divide all movies into 
five categories.

AMms  [35] is a magazine subscription dataset 
from the Amazon website. For each mag-
azine, we choose the score people rated 
most as its label and also divide all maga-
zines into five categories.

Yelp  [63] is a challenge dataset from the Yelp 
website. In this real-world network, users 
and businesses are defined as nodes, and 
commenting behaviors are taken as edges. 
Each business is assigned either one or 
more categories. We only retain business 
in the top-5 categories. If a business has 
more than one category, we assign the top 
one category as the business’s label.

4.2  Baselines

We compare ConMNCI with six state-of-the-art baselines. 
Each of these methods represents a category of related work. 

DeepWalk  [40] first applies random walks to generate 
sequences of nodes over the network and 
then employs the Skip-Gram [33] model to 
learn node embeddings, which is a classic 
method in the field of NRL.

node2vec  [13] uses the random walk procedure to 
balance the breadth-first and depth-first 
search strategy, which is a static transduc-
tive method.

Table 2  Description of the 
datasets

Datasets DBLP BITotc BITalpha ML1M AMms Yelp

Nodes 28,085 5,881 3,783 9,746 74,526 424,450
Edges 236,894 35,592 24,186 1,100,209 89,689 2,610,143
Labels 10 7 7 5 5 5
Timestamps 25 22,115 981 10,850 5,082 70

these parameters is O(d + 3d2 + |B|d2) = O(|B|d2) . 
Thus, the time complexity of this par t is 
O(|B|LQd + |B|K2d + Rd + |B|d2).

5. Selecting Experience Embeddings (lines 13 and 
14). In this part, we need to discuss the complexity 
of self-attention value, RM value, and top-R selec-
tion separately. According to (20) and (21), the time 
complexity of calculating self-attention value is 
U(|B|d2 + |B|2 + |B|2d) . According to (22)-(24), the 
time complexity of calculating RM value is O(|B|d). 
The time complexity of conducting top-R selection 
is O(|B|d). Thus, the time complexity of this part is 
O(|B|d2 + |B|2 + |B|2d + |B|d + Rd) = O(|B|d2 + |B|2d + Rd).

In summary, considering the number of epochs t and the 
number of batches s, the total time complexity of ConMNCI 
can be calculated as follows.

Considering that L,  K,  R,  Q are small constants, the 
time complexity of ConMNCI can be simplified as 
O(d|V| + ts(|B|d2 + |B|2d)).

4  Experiments

We compare ConMNCI with six state-of-the-art baselines 
and conduct experiments on six real-world datasets.

4.1  Datasets

We list the statistical information of the following six real-
world network datasets in Table 2. 

DBLP  [63] is a co-authorship dataset of Computer 
Science domain taken from DBLP which 
has ten research fields. If more than half of 
a researcher’s last ten papers are published 
in a particular research field, we assume 
that this researcher belongs to this field.

(31)

O((d|V| + Kd) + ts(|B|(L2d + K2d + d2) + |B|(K + d)+

(|B|LQd + |B|K2d + Rd + |B|d2) + (|B|d2 + |B|2d + Rd)))

= O(d|V| + ts(|B|(L2d + K2d + d2) + |B|LQd + Rd + |B|2d))
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GraphSAGE  [14] learns a function to generate node 
embeddings by sampling and aggregating 
features from nodes’ local neighborhood, 
which is a static inductive method.

HTNE  [63] uses the Hawkes process to capture 
influence of historical neighbors on the 
current node, which is a dynamic temporal 
transductive method.

DyREP  [48] uses RNNs to learn node embeddings 
while it loss function is built upon temporal 
point process, which is a dynamic temporal 
inductive method.

EvolveGCN  [38] uses a RNN to estimate the GCN 
parameters for the future snapshots, which 
is a static snapshot transductive method.

4.3  Tasks and Evaluation Measures

First, we compare ConMNCI with baselines on three funda-
mental tasks: node classification, network visualization, and 
link prediction. Note that Network Embedding for node clas-
sification can be considered as supervised learning, because 
node classifiers are trained based on node labels. Network 
Embedding for network visualization and link prediction can 
be considered as unsupervised learning, because node labels 
are not involved in these tasks. 

Node Classification:  We train a classifier to predict 
node labels using node embed-
dings. In this task, we use both 
Accuracy and Weighted-F1 as 
metrics.

Network Visualization:  We select some nodes with dif-
ferent labels and project them 
onto a 2-dimensional space, 
then observe the selected nodes’ 
ditributions in the 2-dimensional 
space.

Link Prediction:  Based on two node embeddings, 
we can calculate their dot prod-
uct to determine whether there 
is an edge between these two 
nodes. We use both the AUC 
score and Accuracy as metrics.

 Then we perform ablation study and parameter sensitivity 
study to further evaluate ConMNCI. 

Ablation Study:  We evaluate the performance 
improvements of positional 
encoding, neighborhood 
and community influences, 

and continual learning for 
ConMNCI.

Parameter Sensitivity Study:  We evaluate the effect 
of several hyperpa-
rameters on the per-
formance, such as the 
embedding dimension 
size d, the length of 
neighbor sequence l, 
and the number of com-
munities K, etc.

4.4  Parameter Settings

For all methods, we set the embedding dimension size d, 
the learning rate, the batch size b, the number of negative 
samples Q, the length of neighbor sequence L, and the num-
ber of communities K to be 128, 0.001, 128, 10, 5, and 10, 
respectively. We use default values for other parameters in 
baselines.

In our datasets, the data is arranged chronologically in 
(u, v, t) format. For each dataset, we sort all interactions and 
split the total interaction time range [t0, tn] into two inter-
vals: [t0, ttrain) , [ttrain, tn]. The interactions in these two time 
intervals are used for training and testing, respectively. Note 
that We fix ttrain∕tn = 80%, i.e., we select the top 80% of 
each dataset as the training set, and the rest 20% as the test 
set. If the same timestamp interactions are assigned to both 
training set and test set, we assign all interactions at this 
timestamp to the training set. This is because in our experi-
ments, we use interactions that occurred in the past to predict 
possible future interactions. Therefore, the training and test 
sets should be divided strictly in chronological order.

4.5  Node Classification

Here we train a Logistic Regression function as the classifier 
to perform 5-fold cross-validation to predict node labels. 
Then we evaluate the classification results on all datasets by 
Accuracy and Weighted-F1.

From Table 3, it is observed that ConMNCI achieves 
the best performance. In addition, HTNE, DyREP and 
EvolveGCN perform better than Deepwalk, node2vec and 
GraphSAGE in most cases, which demonstrates that the 
acquisition of dynamic information is critical for learning 
effective network representations. Compared with Graph-
SAGE and HTNE that use neighborhood interactions, 
ConMNCI focuses on both neighborhood and community 
influences, leading to further performance improvements.

Note that all methods’ results are close on AMms. This 
is because that the average degree of each node is 2.40 in 
AMms, i.e., most nodes may interact with only one neighbor 
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in AMms. The topology of AMms looks like a longer chain, 
which leads to poor performance of all methods on AMms.

4.6  Network Visualization

We employ the t-SNE method [28] to project node embed-
dings on DBLP to a 2-dimensional space. In particular, we 
select three fields and 500 researchers in each field. Selected 
researchers are shown in a scatter plot, in which different 
fields are marked with different colors, i.e., green for data 
mining, purple for computer vision, blue for computer 
network.

As shown in Fig.  3, both DeepWalk, node2vec, and 
GraphSAGE failed to separate the three fields clearly. 
HTNE, DyREP and EvolveGCN can only roughly distin-
guish the field boundaries. ConMNCI separates the three 

fields clearly, and one of them has a clear border, which 
indicates that ConMNCI has better performance.

4.7  Link Prediction

For all datasets, we use both Area Under the ROC Curve 
(AUC) [15] and Accuracy as metrics to compare ConMNCI 
with baselines for link prediction.

In the training set, we first generate node embeddings 
by applying ConMNCI and baselines. In the test set, we 
sample a certain number of node pairs connected by inter-
actions as positive samples and sample the same number 
of node pairs without interactions as negative samples. 
Then we calculate the dot product of their embeddings for 
each pair of nodes and use the sigmoid function to normal-
ize the dot product as the interaction probability.

Table 3  Node classification results of all methods on all datasets

Metric(%) method DBLP BITotc BITalpha ML1M AMms Yelp

Accuracy DeepWalk 61.40±0.55 59.07±1.33 72.94±2.87 60.29±0.25 57.80±0.33 50.67±0.89
node2vec 62.49±1.16 59.58±0.44 74.95±0.28 61.96±0.62 57.72±0.02 51.35±0.43
GraphSAGE 63.31±0.53 60.03±0.68 73.89±0.35 61.24±0.59 57.63±0.16 51.84±1.16
HTNE 63.47±0.38 59.99±0.67 76.35±0.85 58.90±1.48 57.67±0.01 52.73±0.16
DyREP 62.59±2.42 61.00±0.69 74.30±1.41 60.23±0.88 57.55±0.34 52.09±0.27
EvolveGCN 62.64±1.87 59.28±0.62 78.58±0.13 56.64±0.75 58.48±0.01 50.93±1.79
ConMNCI 64.65±0.37 62.94±0.42 79.43±0.11 62.89±0.24 58.87±0.07 54.17±0.15

Weighted-F1 DeepWalk 61.07±2.78 51.20±0.67 67.61±4.41 58.63±1.88 42.52±0.29 39.81±1.15
node2vec 62.10±0.54 51.23±0.59 68.32±2.84 58.36±0.83 42.48±0.85 41.84±1.82
GraphSAGE 62.39±0.55 51.05±0.69 67.50±0.41 57.66±1.02 42.16±1.25 40.65±1.92
HTNE 63.07±0.54 51.09±1.17 68.06±0.88 54.15±0.22 42.55±0.15 41.80±1.29
DyREP 62.03±1.23 51.14±1.13 68.43±0.49 57.29±0.71 42.48±0.31 40.93±1.79
EvolveGCN 61.98±2.34 51.79±0.82 67.83±2.21 59.65±0.24 41.53±0.85 39.94±2.23
ConMNCI 64.43±0.82 51.72±1.23 68.64±0.57 60.85±0.77 42.68±0.94 43.07±1.02

Fig. 3  Network visualization
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For AUC, we sort all interaction probabilities in 
descending order and assume that there are edges between 
each node pair of the top-half. By comparing the truth on 
node pairs, we can obtain the AUC score. For Accuracy, 
we set a threshold value of 0.5 to evaluate the prediction 
result. When the probability (normalize dot product) of a 
node pair is greater than 0.5, we consider that there exists 
an edge between this node pair.

As shown in Table 4, it can be seen that ConMNCI has 
the best performance on all datasets, which demonstrates 
the ability of ConMNCI to capture interactive information. 
We also find that all methods obtain poor performance on 
dataset ML1M and AMms. According to the Table 2, we can 
find that the average degree of each node is 2.40 and 225.77, 
respectively. Compare with the other datasets whose average 
degrees are all in the interval (12,17), the network structure 
of datasets ML1M and AMms are very special. We assume 
that for such datasets with too large or too small average 
degrees, researchers need to design targeted methods. This 
may be a new research direction for further grounding of 
network representation learning in industry.

In addition, through the experimental results we find that 
methods such as HTNE which exploits the interaction time 
are more effective than methods such as Deepwalk which 
only focuses on the network structure. Combined with the 
above experiments, we believe that temporal information is 
very useful for capturing the network evolution process and 
should be paid more attention and further utilized.

4.8  Ablation Study

Here, we construct several variants of ConMNCI to study 
the role of positional encoding, community and neighbor-
hood influences, and continual learning, respectively.

4.8.1  Positional Encoding

Different from the existing NRL methods, we use positional 
encoding instead of random initialization to generate the ini-
tial embedding. To compare their differences, we construct 
two variants based on positional encoding (PE) and random 
initialization (RI) to initialize node embeddings.

Although there is no significant difference between the 
final performance of PE and RI through experiments, PE 
is much faster than RI in raising the loss function’s con-
vergence speed. Since one epoch represents one complete 
training on the whole dataset, we use epoch number as a 
metric to measure the convergence speed.

On DBLP, when the performance is almost the same, RI 
requires 30 epochs to converge, while PE only needs 10 
epochs. The convergence speed of the latter is 3 times as 
fast as the former. On BITotc and BITalpha, the conver-
gence speeds of RI and PE are 20 and 5 epochs respectively. 
The convergence speed of the latter is 4 times as fast as the 
former. The results demonstrate that positional encoding 
can accelerate the convergence speed of ConMNCI without 
reducing performance, which is especially applicable for 
large-scale datasets.

4.8.2  Neighborhood and Community Influences

In GRU, we aggregate three types of information: node 
embedding, neighborhood influence and community 
influence. Here, we evaluate the improvement brought by 
neighborhood and community, respectively.

Let ConMNCI.z be a variant of ConMNCI which only 
aggregate node embedding, i.e., z̃tnu = tanh[Wzz

tn−1
u + bz] . 

ConMNCI.zn denotes a variant that only aggre-
gate neighborhood inf luence and node embed-
d i n g ,  i . e . ,  z̃

tn
u = tanh[Wz(z

tn−1
u + NG

tn
u ⋅ NE

tn
u ) + bz]  . 

Table 4  Link prediction results 
of all methods on all datasets

Metric(%) method DBLP BITotc BITalpha ML1M AMms Yelp

AUC DeepWalk 82.53±1.53 51.99±1.44 55.58±1.35 46.35±1.24 54.83±2.11 77.40±0.82
node2vec 81.73±2.76 57.99±1.42 62.45±1.03 50.12±2.56 52.28±3.93 84.26±2.07
GraphSAGE 84.52±1.48 59.67±1.62 69.64±2.56 50.55±3.77 55.54±0.94 85.53±0.83
HTNE 88.68±0.99 71.45±1.83 74.01±1.77 50.21±0.96 57.41±2.54 88.21±0.87
DyREP 87.63±1.52 71.12±2.12 73.42±0.89 50.69±1.43 58.07±2.42 86.64±3.46
EvolveGCN 85.54±2.34 71.79±0.11 71.64±1.32 53.87±1.23 51.43±0.75 79.53±4.82
ConMNCI 89.66±1.03 74.77±0.89 74.32±0.76 54.13±1.31 59.34±0.57 87.29±1.24

Accuracy DeepWalk 52.25±0.71 53.90±0.66 53.99±1.25 50.04±0.89 50.67±1.33 51.74±0.76
node2vec 50.09±0.89 50.17±1.12 50.31±0.57 50.08±0.08 50.00±0.07 50.02±0.13
GraphSAGE 66.62±0.78 55.39±0.64 55.50±0.35 50.49±1.23 53.32±0.82 50.23±1.17
HTNE 73.57±0.64 59.12±0.88 62.38±1.62 46.39±0.58 56.87±2.03 52.90±0.96
DyREP 72.03±0.72 60.49±1.63 64.33±0.79 50.23±2.13 54.54±1.22 51.48±0.97
EvolveGCN 71.48±1.23 61.79±0.64 68.83±0.21 49.53±0.85 53.52±1.43 49.46±3.11
ConMNCI 78.04±0.53 69.72±0.62 69.36±0.64 50.58±1.42 57.00±0.13 52.99±1.03
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ConMNCI.zc denotes a variant that only aggre-
gate community influence and node embedding, i.e., 
z̃
tn
u = tanh[Wz(z

tn−1
u + CG

tn
u ⋅ CO

tn
u ) + bz].

We evaluate these variants of ConMNCI via node clas-
sification task. As shown in Fig. 4, when neighborhood 
and community influences are not used, the performance 
is the worst. The performance is improved when we use 
community influence or neighborhood influence. Note that 
ConMNCI.zn is better than ConMNCI.zc, which means 
that both of two influences are effective, and neighborhood 
influence is more important than community influence.

Comparing the two datasets’ performance, the perfor-
mance improvement of neighborhood influence on DBLP 
is greater than that on AMms. Since in Table 2, the aver-
age degree of each node in DBLP and AMms is 16.87 

and 1.20, respectively. Therefore, the nodes in DBLP are 
more sensitive to neighborhood influence than nodes in 
AMms, because nodes in DBLP have more interactions 
with neighbors. Therefore, when we consider neighbor-
hood influence, the performance improvement of ConM-
NCI on DBLP is greater than that on AMms.

4.8.3  Continual Learning

In this paper, we introduce the concept of continual learn-
ing, which constrain the method to keep sensitive to the 
old knowledge when training new data. To demonstrate the 
validity of continual learning, we define the method without 
continual learning is MNCI, and compare with ConMNCI 
via node classification task on all datasets.

Fig. 4  Ablation study of com-
munity and neighborhood 
influences
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As shown in Fig. 5, even the performance improvement 
varies across datasets, ConMNCI still outperforms MNCI 
on all datasets. By comparing the improvements on differ-
ent datasets, we find that continual learning seems to work 
better on a large scale datasets. The results demonstrate the 
effectiveness of continual learning, which is worthy of fur-
ther research.

4.9  Parameter Sensitivity Study

We evaluate the effect of the embedding dimension size d, 
the length of neighbor sequence L, and the community num-
ber K on the performance of ConMNCI, respectively.

4.9.1  Embedding dimension size

To evaluate the effect of embedding dimension size d on 
the performance of NRL methods, we conduct node clas-
sification experiment on three datasets: DBLP, AMms, and 
BITotc. Specially, we fix the other parameter settings and 
vary d from 32 to 512 to test the performance on ConMNCI 
and baselines. To evaluate these methods via node classifica-
tion task, we use Accuracy as a metric.

As shown in Table 5, we find that the embedding size has 
little effect on the performance of ConMNCI and it performs 

the best overall. Note that GraphSAGE does not achieve the 
best performance on DBLP dataset when d is 128, and simi-
larly HTNE on AMms. But we can also find that the perfor-
mance (63.31%) of GraphSAGE with d=128 are very close 
to the best performance (63.40%), and so is HTNE (57.67% 
vs. 57.68%). In addition, all other methods achieve the best 
performance when d is 128. By comparing the experimental 
results on the three datasets, we speculate that due to random 
initialization in training process, HTNE and GraphSAGE do 
not achieve the best performance at d=128.

However, another issue has drawn our attention. Why do 
almost all methods work best when d is 128? In the field 
of Network Embedding, most of the work [13, 24, 40, 46, 
53] sets d=128 by deafult and obtains best performance 
in experiments. This phenomenon could be explained as 
follows.

When d is less than 128, with the increase of dimen-
sion size, the representation ability of node embedding is 
enhanced and thus the performance is improved. But when 
d is greater than 128, the performance begins to decline. 
We have two speculations about this phenomenon. On the 
one hand, as the dimension size increases, more noise may 
be introduced into node embeddings, which interferes with 
the performance. On the other hand, the embeddings of two 
similar nodes will show similarity in more dimensions as the 
dimension size increases, thus causing difficulties in node 
classification.

Table 5  Parameter sensitivity of 
dimension size d 

Accuracy(%)

dataset method d=32 d=64 d=128 d=256 d=512

DBLP DeepWalk 59.90 60.57 61.40 61.29 60.51
node2vec 62.12 62.46 62.49 62.07 62.49
GraphSAGE 62.39 63.03 63.31 63.40 63.05
HTNE 61.36 62.55 63.47 63.28 63.37
DyREP 62.09 62.33 62.59 62.03 61.87
EvolveGCN 62.02 62.57 62.64 62.55 62.43
ConMNCI 63.92 63.99 64.35 64.07 63.98

AMms DeepWalk 56.60 57.57 57.80 57.11 56.97
node2vec 56.12 56.46 57.72 57.07 57.49
GraphSAGE 56.85 56.87 57.63 57.59 57.03
HTNE 57.36 57.43 57.67 57.28 57.68
DyREP 56.80 57.03 57.55 57.44 57.31
EvolveGCN 58.31 58.02 58.48 57.69 58.17
ConMNCI 58.02 58.11 58.74 58.09 58.07

BITotc DeepWalk 59.02 58.97 59.07 59.00 58.94
node2vec 59.94 60.00 60.01 59.97 59.65
GraphSAGE 60.02 60.17 60.21 60.14 60.17
HTNE 61.12 61.39 61.54 61.08 61.48
DyREP 61.07 61.22 61.23 61.02 61.13
EvolveGCN 59.02 59.02 59.27 59.19 59.17
ConMNCI 62.53 62.87 62.94 62.91 62.76



Embedding temporal networks inductively via mining neighborhood and community influences  

1 3

We, therefore, believe that the embedding dimension size 
should be balanced between representation ability and exper-
imental performance. Some researchers [6] have started to 
experiment with dynamically generating embeddings with 
different dimension sizes for different nodes. However, since 
the change in dimension size has a little influence on perfor-
mance in the field of network embedding, this issue has not 
received much attention from researchers and d is usually set 
to 128. In the future, we will work on this issue.

In summary, the experimental results prove that the 
embedding dimension size has little effect on the perfor-
mance of the method, and the best results tend to arise at 
d=128. Therefore, we set the embedding dimension size d 
to be 128 on ConMNCI and use default values of d in base-
lines. In fact, all baseline method set the default d=128.

4.9.2  Historical Neighbor Sequence Length

When mining neighborhood influence, we use a hyperpa-
rameter of the historical neighbor sequence length L, which 

is designed to truncate a fixed length sequence of node 
neighbors by the latest interactions.

Reference to previous research [17, 27, 63], neighbors of 
very early interactions have little effect on the current node 
interaction. In other words, only the few newly interactive 
neighbors may play a major role in most cases, while other 
neighbors may interfere with traninig. Therefore, to verify 
this intuition, we choose 2, 3, 5, 10, and 20 for the length L, 
other parameters are the same as above.

Specifically, we evaluate ConMNCI with different L via 
node classification task. Due to the large difference in node 
degrees, we select four different datasets, BITotc, BITalpha, 
ML1M, and AMms.

As shown in Table 6, when L is 5, ConMNCI achieves 
the best performance on both BITotc and BITalpha. How-
ever, ML1M tends to have better performance with more 
neighbors (L=10), and AMms tends to have better per-
formance with fewer neighbors (L=2). This may be due 
to different node degree in the dataset. According to data 
description in Table 2, the average degree of each node 
is 2.40 in AMms dataset and is 225.77 in ML1M data-
set, respectively. The average degree of the other datasets 
are all in the interval (12,17). It means that most of the 
nodes in AMms have few edges, while most of the nodes 
in ML1M have a lot of edges. Thus our method requires a 
short neighbor sequence length in AMms (L=2) and a long 
one in ML1M (L=10). In the link prediction experiments 
(Section 4.7), we also discuss the effect of differnt neighbor 
sequence length L.

Table 6  Parameter sensitivity experiment of sequence length L 

Accuracy(%)

Datasets L=2 L=3 L=5 L=10 L=20

BITotc 60.82 62.93 63.21 62.57 61.42
BITalpha 73.11 75.63 79.54 78.89 78.03
ML1M 53.62 56.58 60.12 62.23 62.19
AMms 57.77 57.68 57.05 56.82 56.53

Fig. 6  Parameter sensitivity of 
community number K 
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In summary, we should select different neighbor sequence 
length L for different network data. On the other hand, we find 
that when L is 5, the results on each dataset are closer to the 
best results. Therefore, we select L=5 by default for all datasets.

4.9.3  Community Number

When mining community influence, we use a hyperparameter 
of the community number K. Here we fix the other parameters 
and choose 2, 5, 10, 20, and 30 for K to observe performance 
changes. We consider the task of classification and take Accu-
racy as a metric to evaluate the performance of ConMNCI on 
four datasets: DBLP, BITotc, BITalpha, and Yelp.

As shown in Fig. 6, on BITotc and BITalpha, ConMNCI 
achieves the best performance when K is 5, and on DBLP 
and Yelp, ConMNCI achieves the best performance when K 
is 10. As shown in Table 2, the numbers of node labels are 
5 for BITotc and BITalpha, 7 for Yelp, and 10 for DBLP, 
respectively. This is generally consistent with the optimal 
community number K on the different datasets.

Note that the performance on all datasets is very similar 
to the best performance when K is greater than 10. But when 
K is large, ConMNCI will divide the whole network into a 
large number of smaller communities, leading to expensive 
calculations. Thus we select K=10 for most of the datasets 
to balance performance and efficiency.

5  Conclusions

We propose an inductive continual network representation 
learning method ConMNCI that captures both neighborhood 
and community influences to generate node embeddings 
at any time. Extensive experiments on several real-world 
datasets demonstrate that ConMNCI significantly outper-
forms state-of-the-art baselines. In the future, we will further 
investigate the influence of node text information on node 
embeddings.
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